Website :- https://www.arjun00.com.np w

Introduction to software engineering

- 1.1 Introduction to software

- 1.2 Program Vs software

- 1.3 Software components

- 1.4 . Characteristics of software

- 1.5 Types of software

- 1.6 Generic view of software engineering

+ 1.7 Software process and software process model

¢ 1.Software Engineering :The term is made of two words,
software and engineering. Software 1s more than just a
program code. A program 1s an executable code, which
serves some computational purpose. Software 1s considered
to be collection of executable programming code, associated
libraries and documentations. Software, when made for a
specific requirement 1s called software product.

¢ Engineering on the other hand, is all about developing
products, using well-defined, scientific principles and
methods.

Website :- https://www.arjun00.com.np

Website :- https://www.agun00.com.np
Q

Software engineering is an engineering branch associated
with development of software product using well-defined
scientific, principles, methods and procedures. The outcome
of software engineering 1s an efficient and reliable software
product.

Software Engineering Body of
Knowledge

» The Software Engineering Body of Knowledge (SWEBOK) i1s
an mternational standard ISO/IEC TR 19759:2005][1]
specifying a guide to the generally accepted Software
Engineering Body of Knowledge.

' The Guide to the Software Engineering Body of Knowledge
(SWEBOK Guide) has been created through cooperation
among several professional bodies and members of industry
and 1s published by the IEEE Computer Society (IEEE).

Website :- https://www.arjun00.com.np

Website :- https://www.arjun00.com.np

Programs v/s Software

¢ Software 1s a broad term that covers the programs and
components that 1t required to run. Software consists the
files, whereas a program can itself be a file. Along with these
differences, there are various other comparisons between

both terms.
On the basis of Program Software
Definition A computer program is a set of Software is a set of programs

instructions that is used as a process of = that enables the hardware to
creating -a software’ program ‘by “using - perform-a'specific task.

programming language.

Types Programs do not have further The software can be of three
categorization. types: system software,
application software, and

programming software.

User Interface A program does not have a user Every software has a user
interface. interface that may be in
graphical format or in the form

of a command prompt.

A

Website :- https://www.arjun00.com.np

Website :- https://www.arjun00.com.np

Size

Time taken

Features and

functionality
Development
approach

Documentation

Examples

Programs are smaller in size, and their
size exists between Kilobyte (Kb) to a
megabyte (Mb).

A program takes less time to be

developed.

A program includes fewer features and

limited functionalities.

The development approach of a
program is unorganized, unplanned,

and unprocedural.

There is a lack of documentation in the

program.

Examples of the program are - video

~games, malware,and many, more.

SOFTWARE

Software's are larger in size, and
their between
megabytes (Mb) to gigabytes
(Gb).

size exists

Whereas software requires more

time to be developed.

[t has more features and

functionalities.

The development approach of

software is well planned,

organized, and systematic.

Softwares are properly
documented.
Examples of software are -

Adobe Adobe

Reader, Google Chrome, and _

Phetashep,

CHARACTERISTICS

o Software is developed : Itis not
manufactured. It is not something that will
automatically roll out of an assembly line. It
ultimately depend on individual skill and creative

ability

o Software does not Wear Out : Software is

not susceptible to the environmental melodies and
it does not suffer from any effects with time

Website :- https://www.arjun00.com.np

Website :- https://www.arjun00.com.np

Software is Highly Malleable : In case of

software one can modify the product itself rather
easily without necessary changes.

oMost Software is Created and Not
Assembled from Existing Components

Functionality:

It refers to the suitability, accuracy, interoperability,
compliance, security of software which 1s measured

as degree of performance of the software against its intended

purpose.

Reliability:

Refers to the recoverability, fault tolerance, maturity of
software, which 1s basically a capability of the software
that provide required functionality under the given
situations.

Efficiency:

It is the ability of the software to use resources of system in

the most effective and efficient manner. Software must make
effective use of syetm storage and execute command as per

required timing.

Website :- https://www.arjun00.com.np

Website :- https://www.arjun00.com.np

¢ Usability:
It 1s the extent to which the software can be utilized with
ease and the amount of effort or time required to learn how
to use the software.

' Maintainability:
It 1s the ease with which the modifications can be made 1n a
software to extend or enhance its functionality, improve its
performance, or resolve bugs.

¢ Portability:
It is the ease with which software developers can relaunch
software from one platform to another, without (or with
minimum) changes. In simple terms, software must be made
in way that 1t should be platform independent.

SOFTWARE COMPONENTS

o Off the shelf Components : Existing software
that can be acquired from a third party.

o Full Experience Components : Existing past
projects that are similar to the software to be built for the
current project and team members have full experience.

o Partial Experience components : Existing
past project that are related to the software to be built for
current project but needs substantial modifications

oNew Components . Software components that must
be built by the software team specifically for the needs of the
current project

Website :- https://www.arjun00.com.np

Website :- https://www.arjunO0.com.np
Software Process

A software process (also knows as software methodology) 1s a
set of related activities that leads to the production of the
software. These activities may ivolve the development of the
software from the scratch, or, modifying an existing system.

Any software process must include the following four activities:

1. Software specification (or requirements engineering): Define
the main functionalities of the software and the constrains around
them.

2. Software design and implementation: The software is to be
designed and programmed.

3. Software verification and validation: The software must
conforms;to 1t’s specification and meets the customer needs.

4. Software evolution (software maintenance): The software 1s
being modified to meet customer and market requirements
changes.

Software Process Framework:

A process framework establishes the foundation for a
complete software process by identifying a small number of
framework activities that are applicable to all software
projects, regardless of size or complexity. It also includes a
set of umbrella activities that are applicable across the entire
software process.

Some most applicable framework activities are described
below.

Website :- https://www.arjun00.com.np

Website :- https://www.arjun00.com.np

Common Process Framework

Framework Activities

Task Sets

Tasks
Milestones, Deliverables
SQA Points

Umbrella Activities

Figure: Chartof Process Framework

Elements of software process:

They are different elements of software process.

1. Communication: This activity mvolves heavy
communication with customers and other stakeholders in
order to gather requirements and other related activities.

2. Planning: Here a plan to be followed will be created which
will describe the technical tasks to be conducted, risks,
required resources, work schedule etc.

3. Modeling: A model will be created to better understand
the requirements and design to achieve these requirements.

4. Construction: Here the code will be generated and tested.

» 5.Deployment: Here, a complete or partially complete
version of the software 1s represented to the customers to
evaluate and they give feedbacks based on the evaluation.

Website :- https://www.arjun00.com.np

O

O

O

-~
L)

Website :- https://www.arjun00.com.np

IMPORTANCE OF SOFTWARE
ENGINEERING

1. Reduces complexity

Bi?hzoftware.are a;lwags complex and difficult to develog.
Software engineering has a great solution to decrease the
complexity of any project..

2. To minimize software cost

Software requires a lot of hard work and software engineers
are highly paid professionals. But in software engineering,
programmers plan everything and reduce all those things that
are not required. In turn, cost for software productions
becomes less.

3. To decrease time

If you are making big software then you may need to run
many code to get the ultimate running code. This is a very
time consuming So if you are making your software according
%p software engineering approach then it will reduce a lot of

ime.

4. Handling big projects

Big projects are not made in few days and they require lots of
patience, So to handle big projects without any problem,
organization has to go for software engineering approach.

5. Reliable software

Software should be reliable, means if you have delivered the
software then it should work for at least it's given time

6. Effeteness

Effectiveness comes if anything has made according to the
standards. So Software becomes more effective in
performance with the help of software engineering.

7. Productivity

If programs fails to meet its standard at any stage, then
programmers always improves the code of software to make it
sure that software maintains its standards.

Website :- https://www.arjun00.com.np

Website :- https://iwww.arjunO0.com.np

Changing Nature of Software :

The nature of software has changed a lot over the years.

1.System software: Infrastructure software come under
this category like compilers, operating systems, editors,
drivers, etc. Basically system software 1s a collection of
programs to provide service to other programs.

2. Real time software: These software are used to monitor,
control and analyze real world events as they occur. An
example may be software required for weather forecasting.
Such software will gather and process the status of
temperature, humidity and other environmental parameters
to forcast the weather.

3. Embedded software: This type of software is placed in
“Read-Only- Memory (ROM)”of the product and control the
various functions of the product. The product could be an
aircraft, automobile, security system, signalling system,
control unit of power plants, etc. The embedded software
handles hardware components and is also termed as
intelligent software

4. Business software : This 1s the largest application area.
The software designed to process business applications is
called business software. Business software could be payroll,
file monitoring system, employee management, account
management. It may also be a data warehousing tool which
helps us to take decisions based on available data.
Management information system, enterprise resource
planning (ERP) and such other software are popular
examples of business software.

Website :- https://www.arjun00.com.np

' 5. PerSomal Computerortwire T e a3 in

personal computers are covered in this category. Examples
are word processors, computer graphics, multimedia and
animating tools, database management, computer games etc.
This 1s a very upcoming area and many big organisations are
concentrating their effort here due to large customer base.

¢ 6. Artificial intelligence software: Artificial Intelligence
software makes use of non numerical algorithms to solve
complex problems that are not amenable to computation or
straight forward analysis. Examples are expert systems,
artificial neural network,signal processing software etc

o 7.Web based software: The software related to web

applications come under this category. Examples are HTML,
Java, Perl, DHTML etc

A Generic View of Software Engineering

Definition
Phase

Website :- https://www.arjun00.com.np
1. Definition Phase:
The definition phase focuses on “what”. That 1s, during
definition, the software engineer attempts to identify what
information is to be processed, what function and
performance are desired, what system behavior can be
expected, what interfaces are to be established, what design
constraints exist, and what validation criteria are required to
define a successful system. During this, three major tasks will
occur in some form: system or information engineering,
software project planning and requirements analysis.

2. Development Phase:

The development phase focuses on “how”.That 1s, during
development a software engineer attempts to define how
data are to be structured, how function 1s to'be tmplemented
within a software architecture, how interfaces are to be
characterized, how the design will be translated into a
programming language, and how testing will be performed.
During this, three specific technical tasks should always
occur; software design, code generation, and software
testing.

3. Support Phase:

The support phase focuses on “change” associated with error
correction, adaptations required as the software’s
environment evolves, and changes due to enhancements
brought about by changing customer requirements. Four
types of change are encountered during the support phase:

Website :- https://www.arjun00.com.np

Website :- https://www.arjunO0.com.np

Correction. Even with the best quality assurance activities, it 1s
likely that the customer will uncover defects in the software.
Corrective maintenance changes the software to correct defects.

Adaptation. Over time, the original environment (e.g., CPU,
operating system, business rules, external product characteristics)
for which the software was developed 1s likely to change. Adaptive
maintenance results in modification to the software to
accommodate changes to its external environment.

Enhancement. As software 1s used, the customer/user will
recognize additional functions that will provide benefit.
Perfective maintenance extends the software beyond its
original functional requirements.

Prevention. Computer software deteriorates due to
change, and because of this, preventive maintenance, often
called software reengineering, must be conducted to enable
the software to serve the needs of its end users. In essence,
preventive maintenance makes changes to computer
programs so that they can be more easily corrected, adapted,
and enhanced.

Website :- https://www.arjun00.com.np

Website :- https://www.arjunO0.com.np
Software Processes

The term software specifies to the set of computer programs,
procedures and associated documents (Flowcharts, manuals, etc.) that
describe the program and how they are to be used.

A software process is the set of activities and associated outcome that
produce a software product. Software engineers mostly carry out these
activities. These are four key process activities, which are common to all
software processes. These activities are:

Software specifications: The functionality of the software and
constraints on its operation must be defined.

Software development: The software to meet the requirement must
be produced.

Software validation; The software must be validated to ensure that 1t
does what the customer wants.

Software evolution: The software must evolve to meet changing
client needs.

The Software Process Model

A software process model is a specified definition of a
software process, which 1s presented from a particular
perspective. Models, by their nature, are a simplification, so a
software process model 1s an abstraction of the actual
process, which 1s being described.

Some examples of the types of software process models that
may be produced are:

A workflow model: This shows the series of activities in the process
along with their inputs, outputs and dependencies. The activities in this
model perform human actions.

2. A dataflow or activity model: This represents the process as a set
of activities, each of which carries out some data transformations. It
shows how the mput to the process, such as a specification is converted
to an output such as a design. The activities here may be at a lower level
than activities in a workflow model. They may perform transformations
carried out by people or by computers.

Website :- https://www.arjun00.com.np

Website :- https://www.arjunO0.com.np

3. A role/action model: This means the roles of the people involved
in the software process and the activities for which they are responsible.

There are several various general models or paradigms of software
development:

The waterfall approach: This takes the above activities and produces them
as separate process phases such as requirements specification, software design,
implementation, testing, and so on. After each stage is defined, it is "signed off"
and development goes onto the following stage.

Evolutionary development: This method interleaves the activities of
specification, development, and validation. An initial system is rapidly
developed from a very abstract specification.

Formal transformation: This method is based on producing a formal
mathematical system specification and transforming this specification, using
mathematical methods to a program. These transformations are 'correctness
preserving.' This means that you can be sure that the developed programs meet
its specification.

System assembly from reusable components: This method assumes the
parts of the system already exist. The system development process target on
integrating these parts rather than developing them from scratch.

Website :- https://www.arjun00.com.np

Website :- https://www.arjun00.com.np

Software Development Life Cycles
Models

~ Software Development Life Cycles Models:

7 2.1 Build and fix model

7 2.2 The waterfall model

7 2.3 Prototyping model

7 2.4 Iterative enhancement model

© 2.5 Spiral model

- 2.6 Rapid application development model (RAD)

7 2.7 Selection criteria of a lifecycle model

© SDLC is a process that defines the various stages involved
in the development of software for delivering a high-
quality product. SDLC stages cover the complete life cycle
of a software i.e. from inception to retirement of the
product.

Website :- https://www.arjun00.com.np

Website :- https://www.arjun00.com.np

- SDLC Cycle

7 SDLC Cycle represents the process of developing
software.

Below is the diagrammatic representation of the SDLC cycle:

ﬁ Reguirement

Maintenance gathering &
Analysis
Deployment Design
Tasting Implementatio

I n & Coding

7 SDLC Phases

© Given below are the various phases:
7 Requirement gathering and analysis

- Design

© Implementation or coding

" Testing

© Deployment

7 Maintenance

Website :- https://www.arjun00.com.np

Website :- https://iwww.arjunO0.com.np

1) Requirement Gathering and Analysis

During this phase, all the relevant information is collected from the
customer to develop a product as per their expectation. Any
ambiguities must be resolved in this phase only.

2) Design

In this phase, the requirement gathered in the SRS document is used
as an input and software architecture that is used for implementing
system development is derived.

~ 3) Implementation or Coding
~ Implementation/Coding starts once the developer gets the Design

|

document. The Software design is translated into source code.All
the components of the software are implemented in this phase.

4) Testing
Testing starts once the coding is complete and the
modules are released for testing In this phase, the

developed software is tested thoroughly and any defects
found are assigned to developers to get them fixed.

5) Deployment
Once the product is tested, it is deployed in the

production environment or first UAT (User Acceptance
testing) is done depending on the customer expectation.

6) Maintenance

- After the deployment of a product on the production

environment, maintenance of the product Le. if any issue
comes up and needs to be fixed or any enhancement is to
be done is taken care by the developers.

Website :- https://www.arjun00.com.np

Website :- https://www.arjun00.com.np

~ Software Development Life Cycle Models

o A software life cycle model is a descriptive representation
of the software development cycle. SDLC models might
have a different approach but the basic phases and activity
remain the same for all the models.

Build and fix model

= In the build and fix model (also referred to as an ad
hoc model), the software is developed without any
specification or design. An initial product is built, which is
then repeatedly modified until it (software) satisfies the
user.That is, the software is developed and delivered to
the user. The user checks whether the desired functions
wre present. If not, then the software is changed
according to the needs by adding, modifying or deleting
functions. This process goes on until the user feels that
the software can be used productively, However, the lack
of design requirements and repeated modifications result

in loss of acceptability of software. Thus, software
engineers are strongly discouraged from using this

development approach.

Website :- https://www.arjun00.com.np

T i |

|

This model includes the following two phases.

Build: In this phase, the software code is developed and
passed on to the next phase.

Fix: In this phase, the code developed in the build phase
is made error free.Also, in addition to the corrections to
the code, the code is modified according to the user's

requirements.
Table Advantages and Disadvantages of Build and Fix Model

Advantages Disadvantages
= Requires less experience to = No real means is available of
execute or manage other than the assessing the progress, quality,
ability to program. and risks.
= Suitable for smaller software. = Cost of using this process model is
= Requires less project planning. high as it requires rework until
user's requirements are

accomplished.

= |nformal design of the software as
it involves unplanned procedure.
= Maintenance of these models is

Website :- https: NWWW swpjeae)).com.np

Website :- https://www.arjun00.com.np

Waterfall Model

7 Waterfall model is the very first model that is used in SDLC. [t is also known as the
linear sequential model.

In this model, the outcome of one phase is the input for the next phase.
Development of the next phase starts only when the previous phase is complete.

First, Requirement gathering and analysis is done. Once the requirement is freeze
then only the System Design can start. Herein, the SRS document created is the
output for the Requirement phase and it acts as an input for the System Design.

In System Design Software architecture and Design, documents which act as an

input for the next phase are created i.e. Implementation and coding.

7 In the Implementation phase, coding is done and the software developed is the
input for the next phase i.e. testing.

71 In the testing phase, the developed code is tested thoroughly to detect the defects

in the software, Defects are logged into the defect tracking tool and are retested

once fixed. Bug logging, Retest, Regression testing goes on until the time the

software is in go-live state.

In the Deployment phase, the developed code is moved into production after the

sign off is given by the customer

© Any issues injthe; production: environment are resolved by the developers which
come under maintenance.

|
L J

Website :- https://www.arjun00.com.np

Website :- https://www.arjunO0.com.np

Advantages of the Waterfall Model:

Waterfall model is the simple model which can be easily understood
and 1s the one in which all the phases are done step by step.

Deliverables of each phase are well defined, and this leads to no
complexity and makes the project easily manageable,
Disadvantages of Waterfall model:

Waterfall model is time-consuming & cannot be used in the short
duration projects as in this model a new phase cannot be started
until the ongoing phase is completed.

Waterfall model cannot be used for the projects which have
uncertain requirement or wherein the requirement keeps on
changing as this model expects the requirement to be clear in the
requirement gathering and analysis phase itself and any change in the
later stages would lead to cost higher as the changes would be
required in all the phases.

Prototype Model

The prototype model is a model in which the prototype is
developed prior to the actual software.

Prototype models have limited functional capabilities and
inefficient performance when compared to the actual software.
Dummy functions are used to create prototypes.This is a
valuable mechanism for understanding the customers' needs.

Software prototypes are built prior to the actual software to
get valuable feedback from the customer. Feedbacks are
implemented and the prototype is again reviewed by the
customer for any change.This process goes on until the model
is accepted by the customer

Website :- https://www.arjun00.com.np

Once the requirement gathering is done, the quick design
is created and the prototype which is presented to the
customer for evaluation is built.

Customer feedback and the refined requirement is used
to modify the prototype and is again presented to the
customer for evaluation Once the customer approves the
prototype, it is used as a requirement for building the
actual software. The actual software is build using the
Waterfall model approach.

Advantages of Prototype Model:

Prototype model reduces the cost and time of development as
the defects are found much earlier

Missing feature or functionality or a change in requirement can
be identified in the evaluation phase and can be implemented
in the refined prototype.

[nvolvement of a customer from the initial stage reduces any
confusion in the requirement or understanding of any
functionality.

Disadvantages of Prototype Model:

Since the customer is involved in every phase, the customer
can change the requirement of the end product which
increases the complexity of the scope and may increase the
delivery time of the product.

Website :- https://www.arjun00.com.np

Website :- https://www.arjun00.com.np

Spiral Model
The Spiral Model includes iterative and prototype approach.

Spiral model phases are followed in the iterations. The loops in
the model represent the phase of the SDLC process i.e. the
innermost loop is of requirement gathering & analysis which
follows the Planning, Risk analysis, development, and evaluation.
Next loop is Designing followed by Implementation & then
testing.

Spiral Model has four phases:
Planning

Risk Analysis

Engineering

Evaluation

Planning Risk Analysis

- Engineerin
Evaluation g £

Website :- https://www.arjun00.com.np

Website :- https://www.arjunO0.com.np
i) Planning:
The planning phase includes requirement gathering
wherein all the required information is gathered from the
customer and 1s documented. Software requirement
specification document is created for the next phase.

(ii)) Risk Analysis:
In this phase, the best solution is selected for the risks
involved and analysis is done by building the prototype.

For Example, the risk involved in accessing the data
from a remote database can be that the data access rate
might be too slow. The risk can be resolved by building a
prototype of the data access subsystem.

(iii) Engineering:

Once the risk analysis is done, coding and testing are
done.

(iv) Evaluation:

Customer evaluates the developed system and plans for
the next iteration.

Advantages of Spiral Model:

~ Risk Analysis is done extensively using the prototype

[i |

models.

~ Any enhancement or change in the functionality can be

done in the next iteration.

Disadvantages of Spiral Model:

The spiral model is best suited for large projects only.

The cost can be high as it might take a large number of

iterations which can lead to high time to reach the final
product.

Website :- https://www.arjun00.com.np

Website :- https://www.arjunO0.com.np

Iterative Incremental Model

| The iterative incremental model divides the product into small
chunks.

For Example Feature to be developed in the iteration is
decided and implemented. Each iteration goes through the
phases namely Requirement Analysis, Designing, Coding, and
Testing. Detailed planning is not required in iterations.

Once the iteration is completed, a product is verified and is
delivered to the customer for their evaluation and feedback.
Customer’s feedback is implemented in the next iteration
along with the newly added feature.

Hence, the product increments in terms of features and once
the iterations are completed the final build holds all the
features of the product.

Phases of Iterative & Incremental Development
Model.

- Inception phase
7 Elaboration Phase
~ Construction Phase

0 Transition Phase

(i) Inception Phase:
© Inception phase includes the requirement and scope of the Project.
(ii) Elaboration Phase:

In the elaboration phase, the working architecture of a product is
delivered which covers the risk identified in the inception phase and
also fulfills the non-functional requirements.

(iii) Construction Phase:

In the Construction phase, the architecture is filled in with the code
which is ready to be deployed and is created through analysis,
designing, implementation, and testing of the functional requirement

Website :- https://www.arjun00.com.np

Website :- https://www.arjun00.com.np

(iv) Transition Phase:

0 In the Transition Phase, the product is deployed in the Production
environment,

Advantages of Iterative & Incremental Model:

= Any change in the requirement can be easily done and
would not cost as there is a scope of incorporating the
new requirement in the next iteration.

Risk is analyzed & identified in the iterations.
Defects are detected at an early stage.

As the product is divided into smaller chunks it is easy to
manage the product.

Disadvantages of Iterative & Incremental Model:

Complete requirement and understanding of a product
are required to break down and build incrementally.

Rapid application development model
(RAD)

- The rapid application development model emphasizes on
delivering projects in small pieces. If the project is large, it
1s divided into a series of smaller projects. Each of these
smaller projects is planned and delivered individually. Thus,
with a series of smaller projects, the final project is
delivered quickly and in a less structured manner, The
ma jor characteristic of the RAD model is that it focuses
on the reuse of code, processes, templates, and tools.

Website :- https://www.arjun00.com.np

Website :- https://www.arjunO0.com.np

Planning

Analysis

Prototyping

Repeat analysis
and
prototyping as
necessary
Conclusion of
prototyping

Implementation

The phases of RAD model are listed below.

-~ Planning: Inthis phase, the tasks and activities are
planned. The derivables produced from this phase are
project definition, project management procedures, and a
work plan, Project definition determines and describes
the project to be developed Project management
procedure describes processes for managing issues,
scope, risk, communication, quality, and so on. Work plan
describes the activities required for completing the
project.

~ Analysis: The requirements are gathered at a high level
instead of at the precise set of detailed requirements
level. Incase the user changes the requirements, RAD
allows changing these requirements over a period of time.
This phase determines plans for testing, training and
implementation processes. Generally, the RAD projects
are small in size, due to which high-level strategy
documents are avoided.

Website :- https://www.arjun00.com.np

Website :- https://www.arjunO0.com.np

Prototyping: The requirements defined in the analysis
phase are used to develop a prototype of the application.
A final system is then developed with the help of the
prototype. For this, it is essential to make decisions
regarding technology and the tools required to develop
the final system.

Repeat analysis and prototyping as

necessary: When the prototype is developed, it is sent
to the user for evaluating its functioning. After the
modified requirements are available, the prototype is
updated according to the new set of requirements and is
again sent to the user for analysis.

Conclusion of prototyping: As a prototype is an
1terative process, the project manager and user agree on
a fixed number of processes. ldeally, three iterations are
considered. After the third iteration, additional tasks for
developing the software are performed and then tested.
Last of all, the tested software is implemented.

Implementation: The developed software, which is fully
functioning, is deployed at the user's end.

Website :- https://www.arjun00.com.np

Website :- https://www.arjun00.com.np

Table Advantages and Disadvantages of RAD Model

Advantages

Deliverables are easier to transfer
as high-level abstractions, scripts,
and intermediate codes are used.
Provides greater flexibility as
redesign is done according to the
developer.

Results in reduction of manual
coding due to code generators and
code reuse.

Encourages user involvement.
Possibility of lesser defects due to
prototyping in nature.

Disadvantages

Useful for only larger projects

RAD projects fail if there is no
commitment by the developers or
the wusers to get software
completed on time.

Not appropriate when technical
risks are high. This occurs when
the new application utilizes new
technology or when new software
requires a high degree of
interoperability with existing
system.

As the interests of users and
developers can diverge from
single iteration to next,
requirements may not converge in
RAD model.

Selection criteria of a lifecycle model

© Selecting the right SDLC is a process in itself that the
organization can implement internally or consult for
There are some steps to get the right selection.

= STEP 1: Learn the about SDLC Models

SDLCs are the same in their usage. In order to select
the right SDLC, you should have enough experience and
be familiar with the SDLCs that will be chosen and

understand them correctly.

Website :- https://www.arjun00.com.np

Website :- https://www.arjun00.com.np

STEP 2: Assess the needs of Stakeholders

- We must study the business domain, stakeholders

concerns and requirements, business priorities, our
technical capability and ability, and technology constraints
to be able to choose the right SDLC against their
selection criteria.

STEP 3: Define the criteria

Some of the selection criteria or arguments that you may use to select an
SDLC are:

| Is the SDLC suitable for the size of our team and their skills?

~ Is the SDLC suitable for the selected technology we use for implementing

the solution?
[s the SDLC suitable for client and stakeholders concerns and priorities?
Is the SDLC suitable for the geographical situation (distributed team)?

" Is the SDLC suitable for the size and complexity of our software?
~ Is the SDLC suitable for the type of projects we do?

" Is the SDLC suitable for our software engineering capability?

[s the SDLC suitable for the project risk and quality insurance?

STEP 4: Decide

When you define the criteria and the arguments you need to
discuss with the team, you will need to have a decision matrix
and give each criterion a defined weight and score foreach
option. After analyzing the results, you should documentthis
decision in the project artifacts and share it with the
related stakeholders.

Website :- https://www.arjun00.com.np

Website :- https://www.arjun00.com.np

STEP 5: Optimize

You can always optimize the SDLC during the project
execution, you may notice upcoming changes do not fit with
the selected SDLC, it is okay to align and cope with the
changes. You can even make your own SDLC model which

optimum for your organization or the type of projects you are
1nvolved 1n.

Software Project Management:

© 3. 1Activities in project management

© 3.2 Software project planning

~ 3.3 Sof'tware project management plan

© 3.4 Software project scheduling and techniques
~ 3.5 Software project team management and organization
© 3.6 Project estimation techniques

~ 3.7 COCOMO model

© 3.8 Risk analysis and management

© 3.9 Risk management process

~ 3. 10 Software configuration management

© 3. 11Software change management

© 3. 12Version and release management

Website :- https://www.arjun00.com.np

Website :- https://www.arjun00.com.np

What is Project?

A project is a group of tasks that need to complete to
reach a clear result. A project also defines as a set of
inputs and outputs which are required to achieve a goal.
Projects can vary from simple to difficult and can be
operated by one person or a hundred.

What i1s software project management?

Software project management is an art and discipline of
planning and supervising software projects. It is a sub-
discipline of software project management in which
software projects planned, implemented, monitored and
controlled

[t is a procedure of managing, allocating and timing
resources to develop computer software that fulfills
requirements.

Project Manager

A project manager is a character who has the overal!
responsibility for the planning, design, execution,
monitoring, controlling and closure of a project. A project
manager represents an essential role in the achievement
of the projects.

Website :- https://www.arjun00.com.np

Website :- https://www.arjun00.com.np

Role of a Project Manager:

1. Leader

A project manager must lead his team and should provide
them direction to make them understand what is

expected from all of them.

2. Medium:

The Project manager is a medium between his clients and
his team. He must coordinate and transfer all the
appropriate information from the clients to his team and
report to the senior management.

3. Mentor:

He should be there to guide his team at each step and
make sure that the team has an attachment. Heprovides
a recommendation to his team and points them in the
right direction.

Responsibilities of a Project Manager:

Managing risks and issues.

Create the project team and assigns tasks to several team
members.

Activity planning and sequencing.
Monitoring and reporting progress.
Modifies the project plan to deal with the situation.

Website :- https://www.arjun00.com.np

Website :- https://www.arjun00.com.np

Activities in project management

Software Project Management consists of many activities, that
includes planning of the project, deciding the scope of product,
estimation of cost in different terms, scheduling of tasks, etc.

The list of activities are as follows:
Project planning and Tracking

Project Resource Management

Scope Management

Estimation Management

Project Risk Management

Scheduling Management

Project Communication Management
Configuration Management

1. Project Planning: It is a set of multiple processes, or
we can say that it a task that performed before the
construction of the product starts.

2. Scope Management: [t describes the scope of the
project. Scope management 1s important because it
clearly defines what would do and what would not. Scope
Management create the project to contain restricted and
quantitative tasks, which may merely be documented and
successively avoids price and time overrun.

Website :- https://www.arjun00.com.np

Website :- https://www.arjunO0.com.np
3. Estimation management: This is not only about cost
estimation because whenever we start to develop software,
but we also figure out their size(line of code), efforts, time as
well as cost.

And if we talk about cost, it includes all the elements such as:
Size of software

Quality

Hardware

Communication

Training

Additional Software and tools

Skilled manpower

4. Scheduling Management: Scheduling Management
in software refers to all the activities to complete in the
specified order-and within time slotted to each activity.
Project managers define multiple tasks and arrange them
keeping various factors in mind.

5. Project Resource Management: In software
Development, all the elements are referred to as
resources for the project. It can be a human resource,

productive tools, and libraries.
Resource management includes:

Create a project team and assign responsibilities to every
team member

Developing a resource plan is derived from the project
plan.

Adjustment of resources.

Website :- https://www.arjun00.com.np

Website :- https://www.arjun00.com.np

6. Project Risk Management: Risk management
consists of all the activities like identification, analyzing
and preparing the plan for predictable and unpredictable

risk in the project.

Several points show the risks in the project:

The Experienced team leaves the project, and the new
team joins 1it.

Changes in requirement.

Change in technologies and the environment.

Market competition.

7. Project Communication

Management: Communication is an essential factor in
the success of the project. It is a bridge between client,
organization, team members and as well as other
stakeholders of the project such as hardware suppliers.

8. Project Configuration

Management: Configuration management is about to
control the changes in software like requirements, design,
and development of the product.

Website :- https://www.arjun00.com.np

Website :- https://www.arjun00.com.np

Software Project Planning

o}

A Software Project is the complete methodology of
programming advancement from requirement gathering
to testing and support, completed by the execution
procedures, in a specified period to achieve intended
software product.

Before starting a software project, it is essential to determine
the tasks to be performed and properly manage allocation of
tasks among individuals involved in the software development.
Hence, planning is important as it results in effective software
development.

Project planning is an organized and integrated management
process, which focuses on activities required for successful
completion of the project. It prevents obstacles that arise in
the project such as changes in projects or organization’s
objectives, non—availability of resources, and so on.

Project planning also helps in better utilization of resources
and optimal usage of the allotted time for a project.The other
objectives of project planning are listed below,

[t defines the roles and responsibilities of the project
management team members.

[t ensures that the project management team works
according to the business objectives.

[t checks feasibility of the schedule and user
requirements.

[t determines project constraints.

Website :- https://www.arjun00.com.np

WeDbsiiG'sr MENRSAL WYMYLAT BIRAR &9 -np

Senior Management Project Management Team

« Approves the project, employ « Reviews the project plan and
personnel, and provides resources implements procedures for
required for the project. completing the project.

» Reviews project plan to ensure « Manages all project activities.
that it accomplishes the business « Prepares budget and resource
objectives. allocation plans.

» Resolves conflicts among the « Helps in resource distribution,
team members. project management, issue

» Considers risks that may affect the resolution, and so on.
project so that appropriate « Understands project objectives
measures can be taken to avoid and finds ways to accomplish the
them. objectives.

« Devotes appropriate time and
effort to achieve the expected
results.

» Selects methods and tools for the
project.

Project Scheduling

Project-task scheduling is a significant project planning activity.
[t comprises deciding which functions would be taken up
when. To schedule the project plan, a software project manager
wants to do the following:

[dentify all the functions required to complete the project
Break down large functions into small activities.

Determine the dependency among various activities.
Establish the most likely size for the time duration required
to complete the activities.

Allocate resources to activities.

Plan the beginning and ending dates for different activities.

Determine the critical path. A critical way is the group of
activities that decide the duration of the project.

Website :- https://www.arjun00.com.np

Different Fechniques of\RProject SCheduling
Project Scheduling typically includes various techniques,
an outline of each technique is provided below.

1. Mathematical Analysis

Critical Path Method (CPM) and Program Evaluation and
Review Technique (PERT) are the two most commonly
used techniques by project managers. These methods are
used to calculate the time span of the project through the
scope of the project.

a. Critical Path Method

Every project's tree diagram has a critical path. The
Critical Path Method estimates the maximum and
minimum time required to complete a project. CPM also
helps to identify critical tasks that should be incorporated
into a project. Delivery time.changes do not affect the
schedule. The scope of the project and the list of activities
necessary for the completion of the project are needed
for using CPM. Next, the time taken by each activity is
calculated. Then, all the dependent variables are identified.
This helps in identifying and separating the independent
variables. Finally, it adds milestones to the project.

b. Program Evaluation and Review Technique
(PERT)

PERT is a way to schedule the flow of tasks in a project
and estimate the total time taken to complete it.This
technique helps represent how each task is dependent on
the other. To schedule a project using PERT, one has to
define activities, arrange them in an orderly manner and
define milestones. You can calculate timelines for a project

\Ohesecbisebs of [oHd el /af gondiidamcesn00.com.np

Website bﬂtpﬁéﬁb’wwmagjunoo.mm.np
» Most-likely timing

» Pessimistic timing

PERT chart

H ~—» Dummy Activity

2. Duration Compression

» Duration compression helps to cut short a schedule if
needed. [t can adjust the set schedule by making changes
without changing the scope in case, the project is running
late. Two methodologies that can be applied: fast tracking
and crashing.

a. Fast Tracking

Fast-tracking is another way to use CPM. Fast-tracking
finds ways to speed up the pace at which a project is

being implemented by either simultaneously executing
many tasks or by overlapping many tasks to each other.

Website :- https://www.arjun00.com.np

Website :- https://www.arjun00.com.np

b. Crashing

Crashing deals with involving more resources to finish the
project on time. For this to happen, you need spare
resources to be available at your disposal. Moreover, all the
tasks cannot be done by adding extra resources.

3. Simulation

The expected duration of the project is calculated by using a
different set of tasks in simulation. The schedule is created on
the basis of assumptions, so it can be used even if the scope 1is
changed or the tasks are not clear enough.

4, Resource-Leveling Heuristics

Cutting the delivery time or avoiding under or overutilization
of resources by making adjustments with the schedule or
resources is called resource leveling heuristics. Dividing the
tasks as per the available resources, so that no resource is
under or over-utilized. The only demerit of this methodology is
it may increase the project's cost and time.

5.Task List

The task list is the simplest project scheduling technique
of all the techniques available. Documented in a
spreadsheet or word processor is the list of all possible
tasks involved in a project. This method is simple and the
most popular of all methods. It is very useful while
implementing small projects. But for large projects with
numerous aspects to consider task list is not a feasible
method.

Website :- https://www.arjun00.com.np

Website :- https://www.arjun00.com.np
work breakdown structure
The work breakdown structure formalism supports the
manager to breakdown the function systematically after
the project manager has broken down the purpose and
constructs the work breakdown structure: he has to find
the dependency among the activities. Dependency among
the various activities determines the order in which the
various events would be carried out.

Work breakdown Structure of an MIS problem

MIS Application
Requirement ; Document
Specifications Design Code Test
Graphical user Graphical user
Database part Interface part Database part Interface part

Team Management

Team management includes the processes required to
make the most effective use of the people involved with
the project. The project team includes the project
manager and the project staff who have been assigned
with the responsibility to work on the project.

Website :- https://www.arjun00.com.np

Website :- https://www.arjun00.com.np

6. Gantt Chart

For tracking progress and reporting purposes, the Gantt
Chart is a visualization technique used in project
management. It is used by project managers most of the
time to get an idea about the average time needed to
finish a project. A project schedule Gantt chart is a bar
chart that represents key activities in sequence on the left
vs time. Each task is represented by a bar that reflects the
start and date of the activity, and therefore its duration.

Software Progress Report

Deployment _
‘ '
Implementation _
Testing -
Coting ==
Analysis -
4/10/18 2/30/18 7/19/18 9/7/18 10/27/18 12/16/18 2/4/19
Start Date B Duration

Website :- https://www.arjun00.com.np

Website :- https://www.arjun00.com.np

Team Management Process The major processes involved
1n team management are:

[] Plan: Team identification, the process of identifying the
skills and competencies required for carrying out the
project activities and assign roles and responsibilities.

[| Do: Team building, organizing the team and building
their capacity to perform on the project, provide coaching
and mentoring.

| | Check: Evaluate team and individual performance,
monitor skills, and motivation.

| | Adapt: Improve team performance, build skills and set
new targets

Inputs Outputs
- Staffing
* WBsS management
= Scope plan
 Policies responsibility
« Skills matrix
Assessment T
- Performance > A y
. evaluations
reviews
» Development
plans

Figure | - Team PO Chart

Website :- https://www.arjun00.com.np

Website :- https://www.arjun00.com.np

Inputs: Inputs for the project team management include
the following documents or sources of information:

WBS

Project Scope Statement
HR organization policies

Assessment of team skills

Performance reviews

Outputs:The project team will use the above information
to develop four important documents for the project:

Staffing management plan
Resource responsibility matrix
Team evaluations

Development plans

Software Project Team Organization

There are many ways to organize the project team.
Some important ways are as follows :

Hierarchical team organization

Chief-programmer team organization

Matrix team, organization

Egoless team organization

Democratic team organization

Website :- https://www.arjun00.com.np

Hierar¢hical@team organization:n00.com.np

In this, the people of organization at different levels
following a tree structure. People at bottom level
generally possess most detailed knowledge about the
system. People at higher levels have broader appreciation

of the whole project.

#== Team Leader

&= Senior Programmers

Junior Programmers

Hierarchical team organization | s:::

—) , e
() Chief Executive ¢

() () () Team Leaders

Fi\ A | / T\
/ \ / \ : \
4 \ ' 4 '\I /
/ \ f / \
o~ - L L A —~4 - A,

YCH () @I (\ Uy 3E)

Project Members

Large projects often distinguish levels of management:

L]

Leaf nodes is where most development gets done; rest of tree is management

Different levels do different kinds of work—a good programmer may not be a
good manager

Status and rewards depend on your level in the organization
Works well when projects have high degree of certainty, stability and repetition
But tends to produce overly positive reports on project progress, e.g.:

Bottom level: “We are having severe trouble implementing module X"

Level 1: “There are some problems with module X"

Level 2: “Progress is steady; | do not foresee any real problems.”

Top: “Everything is proceeding according to our plan.”

Chief-programmer team organization :
This team organization is composed of a small team consisting

Wedsites teptiersesAvww.arjun00.com.np

The Chi¢Fprogrammer ST WV UE AT Bvely

involved in the planning, specification and design process and
ideally in the implementation process as well.

The project assistant : It is the closest technical co-worker
of the chief programmer.

The project secretary : It relieves the chief programmer
and all other programmers of administration tools.

Specialists : These people select the implementation
language, implement individual system components and employ
software tools and carry out tasks.

Chief Programmer Team

Chief Progranuner

Assistant
Chief Programmer

—_— . -_—
a— /i {\\"‘ﬁ, e
- S .
Senior Programmer Librarian Administration r Tester

Junior Programmer

o What do the graphics imply about this team structure?
e Chief programmer makes all important decisions
¢ Must be an expert analyst and architect, and a strong leader
e Assistant Chief Programmer can stand in for chief, if needed
o Librarian takes care of administration and documentation
e Additional developers have specialized roles

Chief Programmer

Backup Programmer

Project Secretary

Speciallst's Pool
 Project Administrator

Website :- hitps.//www.arjun00.com.np

rammer etc

MatrixTeam Organization/:.arjunO0.com.np

In matrix team organization, people are divided into
specialist groups. Each group has a manager, Example of
Metric team organization is as follows :

Egoless Team Organization :

Egoless programming is a state of mind in which
programmer are supposed to separate themselves from
their product. In this team organization goals are set and
decisions are made by group consensus. Here group,
leadership' rotates based on tasks to be performed and
differing abilities of members.

Matrix organization

real-time

programming graphics databases QA testing
if project X —l- X i X
project B . | X : ' X
| project A 1 | X X X I

e Organize people in terms of specialties
» Matrix of projects and specialist groups

e People from different departments allocated to software
development, possibly part-time

e Pros and cons?

e Project structure may not match organizational structure
¢ Individuals have multiple bosses
 Difficult to control a project’s progress

Democratic Team Organization :

[t is quite similar to the egoless team organization, but
one member is the team leader with some
responsibilities :

Coordination

\VVelltbmlfdecisibrs whet\eonsensas|canadt) beoeached

Website :- https://www.arjun00.com.np

Democratic or
Open structured teams

k_flaA /A;Wi\

Y Tester Programmer

R) lllll
=~ | lfafif =~ \
h

Designer Librarian

e A“grass roots” anti-elitist style of team organization

Egoless: group owns the documents & code (not individuals)
All decisions are based on team consensus

Depends on total cooperation of its members

Requires clear structure for the way the team interacts

Functional roles (e.g. moderator, recorder) rotate among
team members

A technical leader has external responsibility and resolves
issues when team doesn’t reach consensus

Software Engineering | Project size estimation
techniques

Estimation of the size of the software is an essential part
of Software Project Management. It helps the project
manager to further predict the effort and time which will
be needed to build the project.Various measures are used
in project size estimation. Some of these are:

LLines of Code

Number of entities in ER diagram

Total number of processes in detailed data flow diagram

Function points

Website :- https://www.arjun00.com.np

1. Linés'of Code{(LOC) 1¢- e e SBERes: LOC
count the total number of lines of source code in a
project. The units of LOC are:

KLOC-Thousand lines of code
NLOC- Non-comment lines of code
KDSI- Thousands of delivered source instruction

The size is estimated by comparing it with the existing
systems of the same kind. The experts use it to predict
the required size of various components of software and
then add them to get the total size.

2. Number of entities in ER diagram: ER
model provides a static view of the project. It describes
the entities and their relationships. The number of entities
in ER model can be used to measure the estimation of
the size of the project. The number of entities depends on
the size of the project.This is because more entities
needed more classes/structures thus leading to more
coding.
Advantage

Size estimation can be done during the initial stages of

planning.
The number of entities is independent of the
programming technologies used.

Disadvantages:

No fixed standards exist. Some entities contribute more
project size than others.

Just like FPA, it is less used in the cost estimation model.

Nehepdifmust betigonvenped Ao iN00.com.np

3. Totallnumber lof processesiin detailed data flow
diagram: Data Flow Diagram (DFD) represents the
functional view of software.The model depicts the main
processes/functions involved in software and the flow of
data between them. Utilization of the number of functions
in DFD to predict software size. Already existing
processes of similar type are studied and used to estimate
the size of the process. Sum of the estimated size of each
process gives the final estimated size.

Advantages:
[t is independent of the programming language

Each major process can be decomposed into smaller
processes. This will increase the accuracy of estimation

Disadvantages:

Studying similar kinds of processes to estimate size takes
additional time and effort.

All software projects are not required for the
construction of DFD,

4. Function Point Analysis: In this method, the number
and type of functions supported by the software are
utilized to find FPC (function point count). The steps in

function point analysis are:
Count the number of functions of each proposed type.
Compute the Unadjusted Function Points (UFP).
FindTotal Degree of Influence(TDI).
Compute Value Adjustment Factor (VAF).

\A}l %;thf Func n P01 t Count (FPC).
ebsite www.arjun00.com.np

Website :- https://www.arjun00.com.np
Software Engineering | COCOMO Model

Cocomo (Constructive Cost Model) is a regression
model based on LOC, i.e number of Lines of Code. [t
is a procedural cost estimate model for software projects
and often used as a process of reliably predicting the
various parameters associated with making a project such
as size, effort, cost, time and quality. [t was proposed by
Barry Boehm in 1970 and is based on the study of 63
projects, which make it one of the best-documented
models.

The key parameters which define the quality of any
software products, which are also an outcome of the
Cocomo are primarily Effort & Schedule:

Effort: Amount of labor that will be required to
complete a task. It is measured in person—months units.

Schedule: Simply means the amount of time required for
the completion of the job, which is, of course, proportional

to the effort put. It is measured in the units of time such

as weeks, months.

Different models of Cocomo have been proposed to
predict the cost estimation at different levels, based on
the amount of accuracy and correctness required. All of
these models can be applied to a variety of projects, whose
characteristics determine the value of constant tobe used
in subsequent calculations. These characteristics
pertaining to different system types are mentioned below.

Website :- https://www.arjun00.com.np

Website :- https://www.arjunO0.com.np

Boehm'’s definition of organic, semidetached, and embedded
systems:

Organic - A software project is said to be an organic type if

the team size required is adequately small, the problem is well
understood and has been solved in the past and also the team
members have a nominal experience regarding the problem.

Semi-detached - A software project is said to be a Semi-
detached type if the vital characteristics such as team-size,
experience, knowledge of the various programming
environment lie in between that of organic and Embedded. The
projects classified as Semi-Detached are comparatively less
familiar and difficult to develop compared to the organic ones
and require more experience and better guidance and
creativity. Eg: Compilers or different Embedded Systems can be
considered of Semi-Detached type.

Embedded - A software project with requiring the
highest level of complexity, creativity, and experience
requirement fall under this category Such software
requires a larger team size than the other two models
and also the developers need to be sufficiently
experienced and creative to develop such complex
models. All the above system types utilize different values

of the constants used in Effort Calculations.

Types of Models: COCOMO consists of a hierarchy of

three increasingly detailed and accurate forms. Any of the

three forms can be adopted according to our

requirements These are types of COCOMO model:
Basic COCOMO Model

Intermediate COCOMO Model
Detailed COCOMO Model

Website :- https://www.arjun00.com.np

Website :- https://www.arjun00.com.np

The first level, Basic COCOMO can be used for quick
and slightly rough calculations of Software Costs. Its
accuracy 1s somewhat restricted due to the absence of
sufficient factor considerations.

Intermediate COCOMO takes these Cost Drivers
into account and Detailed COCOMO additionally
accounts for the influence of individual project phases, i.e
in case of Detailed it accounts for both these cost drivers
and also calculations are performed phase wise
henceforth producing a more accurate result.

Risk analysis and management 3.9 Risk management
process 3. 10 Software configuration management
3. 11Software change management 3.12Version and
release management

What is Risk?

"Tomorrow problems are today's risk. " Hence, a clear
definition of a "risk" is a problem that could cause some

loss or threaten the progress of the project, but which
has not happened yet.

Website :- https://www.arjun00.com.np

Website :- https://www.arjun00.com.np

Risk Management

A software project can be concerned with a large variety
of risks. In order to be adept to systematically identify the
significant risks which might affect a software project, it is
essential to classify risks into different classes. The project
manager can then check which risks from each class are
relevant to the project.

There are three main classifications of risks which can

affect a software project:
Project risks

Technical risks
Business risks

1. Project risks: Project risks concern differ forms of
budgetary, schedule, personnel, resource, and customer-
related problems. A vital project risk is schedule slippage

2. Technical risks: Technical risks concern potential
method, implementation, interfacing, testing, and
maintenance issue.

3. Business risks: This type of risks contain risks of
building an excellent product that no one need, losing
budgetary or personnel commitments, etc.

Website :- https://www.arjun00.com.np

Risk Mahagemene Acthtipses/ www.arjun00.com.np
Risk management consists of three main activities,
as shown in fig:

Risk Identification

Risk Assessment Risk Analysis

Risk Prioritization

Risk Management

Risk Management Planning

Risk Control

Risk Monitoring

Risk Resolution

Risk Management Activities

Risk Assessment

The objective of risk assessment'is to' division the'risks in
the condition of their loss, causing potential. For risk
assessment, first, every risk should be rated in two
methods:

The possibility of a risk coming true (denoted as 1).

The consequence of the issues relates to that risk

(denoted as s).
Based on these two methods, the priority of each risk can

be estimated:

p=1*s
Where p 1s the priority with which the risk must be
controlled, r is the probability of the risk becoming true,
and s is the severity of loss caused due to the risk
becoming true. If all identified risks are set up, then the
most;hkehrand.damagingljsks(xﬂlbe controlled first, and

re .comprehensive r1 k abatement methods can be
W%Q@fi?the;b)[i WWW al| Uﬂég com.np

Website :- https://www.arjunO0.com.np

Fertorim quatitative risk arnatysis

[t is the process of prioritizing risks for further analysis of
project risk or action by combining and assessing their
probability of occurrence and impact. It helps managers to
lessen the uncertainty level and concentrate on high
priority risks.

Risk Control

[t is the process of managing risks to achieve desired
outcomes. After all, the identified risks of a plan are
determined; the project must be made to include the
most harmful and the most likely risks. Different risks
need different containment methods.

Risk Leverage: To choose between the various methods
of handling risk, the project plan must consider the amount
of controlling the risk and the corresponding reduction
of risk. For this, the risk leverage of the various risks can
be estimated.

Risk leverage is the variation in risk exposure divided by
the amount of reducing the risk.

Risk leverage = (risk exposure before reduction -
rick avnnciire after radiicrtinn) / (cact af rediictinn)

Website :- https://www.arjun00.com.np

1. Riskeplanning:iTtip £ 15kvplanming méthed conspders
each of the key risks that have been identified and
develop ways to maintain these risks.

2. Risk Monitoring: Risk monitoring is the method king
that your assumption about the product, process, and
business risks has not changed.

What is Risk Analysis?

Risk Analysis in project management is a sequence of
processes to identify the factors that may affect a
project's success. These processes include risk
identification, analysis of risks, risk management and
control, etc. Proper risk analysis helps to control possible
future events that may harm the overall project. It is more
of a pro-active than a reactive process.

How to Manage Risk?

Risk Management in Software Engineering primarily
involves following activities:

Plan risk management

It 1s the procedure of defining how to perform risk
management activities for a project.

Risk Identification

[t is the procedure of determining which risk may affect
the project most.This process involves documentation of
existing risks.

Quantitative risk analysis

[t is the procedure of numerically analyzing the effect of
identified risks on overall project objectives. In order to
minimize the project uncertainty, this kind of analysis are

WEBLHE L HEEHSY AR arjun00.com.np

Website :- https://www.arjun00.com.np

Plan risk responses

To enhance opportunities and to minimize threats to
project objectives plan risk response is helpful. It
addresses the risks by their priority, activities into the
budget, schedule, and project management plan.

Control Risks

Control risk is the procedure of tracking identified risks,
identifying new risks, monitoring residual risks and
evaluating risk.

Software Configuration Management

When we develop software, the product (software)
undergoes many. changes in their maintenance phase; we
need to handle these changes effectively.

Several individuals (programs) works together to achieve
these common goals. This individual produces several
work product (SC Ttems) e.g, Intermediate version of
modules or test data used during debugging, parts of the
final product.

The elements that comprise all information produced as a
part of the software process are collectively called a
software configuration.

As software development progresses, the number of
Software Configuration elements (SCI's) grow rapidly.

Website :- https://www.arjun00.com.np

These \arePhandled 'and /controlled by SCM.This is
where we require software configuration
management.

A configuration of the product refers not only to the
product's constituent but also to a particular version of the
component.

Therefore, SCM is the discipline which
Identify change
Monitor and control change

Ensure the proper implementation of change made to the
1tem.

Auditing and reporting on the change made.

Configuration Management (CM) is a technic of identifying,
organizing, and controlling modification to software being
built by'a programming team.

3.11Software change management

Change Management in software development refers to
the transition from an existing state of the software
product to another improved state of the product. It
controls, supports, and manages changes to artifacts, such
as code changes, process changes, or documentation
changes. Where CCP (Change Control Process) mainly
identifies, documents, and authorizes changes to a
software application.

Process of Change Management :

When any software application/product goes for any
changes in an IT environment, it undergoes a series of

sedléiit B diocessbstip sallasvw.arjun00.com.np

(reatingasrequesithos-ghangey arjun00.com.np

Reviewing and assessing a request for change
Planning the change

Testing the change

Creating a change proposal

Implementing changes

Reviewing change performance

Closing the process

Importance of Change Management :

For improving performance

For increasing engagement

For enhancing innovation

For including new technologies

For implementing new requirements

For reducing cost

Key points to be considered during Change
Management :

Reason of change

Result of change

The portion to be changed
Person will change

Risks involved in change
Alternative to change
Resources required for change

Relationship between changes

Website :- https://www.arjun00.com.np

3.12 Vigessomn anithbréleaseinaitagement
The process involved in version and release management
are concerned with identifying and keeping track of the
versions of a system Versions managers devise procedures
to ensure that versions of a system may be retrieved
when required and are not accidentally changedby the
development team. For products, version managers work
with marketing staff and for custom systems with
customers, to plan when new releases of a system should
be created not distributed for deployment.

Some versions may be functionally equivalent but
designed for different hardware or software configuration
Versions with only small differences are sometimes
called variants.

A system release may be a version that's distributed to
customers. Each system release should either include new
functionality or should be intended for a special hardware
platform. There are normally many more versions of a
system than release. Versions are created with an
organization for internal development or testing and are
not intended for release to customers.

Version ldentification :

To create a specific version of a system, you've got to
specify the versions of the system components that ought
to be included in it. In a large software system, there are
hundreds to software components, each of which may
exist in several different versions.

There must therefore be an unambiguous way to identify
each component version to ensure that the right
components are included in the system. Three basic

tedheesiite rsdd 6 Sohponany. rkien G AT Tneatish

Website :- https://www.arjun00.com.n
Version Num eringp:) P

In version numbering scheme, a version number is added
to the components or system name. If the first version is
called 1.0, subsequent versions are 1.1, 1.2 and so on. At
some stage, a new release is created (release 2.0) and
process start again at version 2.1. The scheme is linear,
based on the assumption that system versions are created
in sequence. Most version management tools such as RCS
and CVS support this approach to version identification.

93
(5
®$®

Attribute Based Identification :

[f each version is identified by a unique set of attributes, it
is easy to add new versions, that are derived from any of
existing versions. These are identified using unique set of
attribute values.

Change Oriented Identification :

Fach component is known as as in attribute-based
identification but is additionally related to one or more
change requests. That is, it is assumed that each version of
component has been created in response to one or more
change requests. Component version is identified by set of
change requests that apply to components.

Website :- https://www.arjun00.com.np

Website :- https://www.arjun00.com.np

Software Requirement Analysis &
Specification:

4.1 Requirement engineering

4.2 Requirement elicitation
4.2.1 Interviews
4, 2.2 Brainstorming series
4.2.3 Use case approach
4.3 Requirement analysis
43.1. Data flow diagram
4,3.2 Data dictionary
4,3.3 Entity-Relationship diagram
4,3.4 Software prototyping
4.4 Requirement documentation

dd A Nature of SRS
4,4.2 Characteristics of a good SRS
4,4.3 Organization of SRS

Requirement Engineering

Requirement Engineering is the process of defining,
documenting and maintaining the requirements. [t is a
process of gathering and defining service provided by the
system. Requirements Engineering Process consists of the
following main activities:

Requirements elicitation

Requirements specification
Requirements verification and validation

Requirements management

Website :- https://www.arjun00.com.np

Website :- https://www.arjun00.com.np

Requirements elicitation is perhaps the most difficult,
most error—prone and most communication intensive
software development. It can be successful only through
an effective customer-developer partnership. It is needed
to know what the users really need.

There are a number of requirements elicitation methods.

Few of them are listed below -

Requirement Elicitation Techniques

Requirements Elicitation is the process to find out the
requirements for an intended software system by
communicating with client, end users, system users and
others who have a stake in the software system
development.

There are various ways to.discover requirements

Interviews

Interviews are strong medium to collect requirements. Organization
may conduct several types of interviews such as:

Structured (closed) interviews, where every single information to
gather is decided in advance, they follow pattern and matter of
discussion firmly.

Non-structured (open) interviews, where information to gather is
not decided in advance, more flexible and less biased.

Oral interviews
Written interviews

One-to-one interviews which are held between two persons across
the table.

‘Group interviews which are held between groups of participants.
They help to uncover any missing requirement as numerous people
are involved.

Website :- https://www.arjun00.com.np

Braingtegites - https://www.arjun00.com.np

An informal debate is held among various stakeholders
and all their inputs are recorded for further requirements
analysis.

[t is a group technique

[t is intended to generate lots of new ideas hence
providing a platform to share views

A highly trained facilitator is required to handle group
bias and group conflicts.

Every idea 1s documented so that everyone can sece 1t.

Finally, a document is prepared which consists of the list
of requirements and their priority if possible.

Use Case Approach:

This technique combines text and pictures to provide a
better understanding of the requirements.

The use cases describe the ‘what’, of a system and not
‘lov'. Hence, they only give a functional view of the
system.

The components of the use case design includes three
ma jor things - Actor, Use cases, use case diagram.

Actor -
[t is the external agent that lies outside the system but
interacts with it in Ssome way. An actor maybe a person,
machine etc. [t is represented as a stick figure. Actors can
be primary actors or secondary actors.
Primary actors - It requires assistance from the system to
achieve a goal.

Secondary actor - [t is an actor from which the system needs
assistance.

Website :- https://www.arjun00.com.np

Website :- https://www.arjun00.com.np
Use cases -

They describe the sequence of interactions between
actors and the system. They capture who (actors) do
what (interaction) with the system. A complete set of use
cases specifies all possible ways to use the system.

Use case diagram -

A use case diagram graphically represents what happens
when an actor interacts with a system [t captures the
functional aspect of the system.

A stick figure is used to represent an actor.

An oval is used to represent a use case.
A line is used to represent a relationship between an actor and
a use case.

Requirement analysis 4.3. 1. Data flow diagram 4. 3.2 Data
dictionary 4.3.3 Entity-Relationship diagram 4. 3.4
Software prototyping

Requirement Analysis, also known as Requirement
Engineering, is the process of defining user expectations
for a new software being built or modified.

Some of the technique for requirement analysis are:

Data Flow Diagrams: Data Flow Diagrams (DFDs) are
used widely for modeling the requirements. DFD shows
the flow of data through a system The system may be a
company, an organization, a set of procedures, a computer
hardware system, a software system, or any combination
of the preceding. The DFD is also known as a data flow
graph or bubble chart.

Website :- https://www.arjun00.com.np

VWebsite :- hitps://www.arjunO0.com.n fJ
Data Dictionaries: Data Dictionaries are simply

repositories to store information about all data items
defined in DFDs. At the requirements stage, the data
dictionary should at least define customer data items, to
ensure that the customer and developers use the same
definition and terminologies.

Entity-Relationship Diagrams: Another tool for
requirement specification is the entity-relationship
diagram, often called an "E-R diagram." It is a detailed
logical representation of the data for the organization and
uses three main constructs i.e. data entities, relationships,
and their associated attributes.

Requirement documentation 4. 4.1 Nature of SRS 4. 4. 2
Characteristics of a good SRS 4. 4. 3 Organization of SRS

A Software Requirements Specification (SRS) is a
document that describes the nature of a project, software
or application. In simple words, SRS document is a manual
of a project provided it is prepared before you kick-start
a project/application.

Nature of Software Requirement Specification
(SRS):

The basic issues that SRS writer shall address are
the following:

1. Functionality: What the software is supposed to do?
2. External Interfaces: How does the software interact

with people, system's hardware, other hardware and other
software?

Website :- https://www.arjun00.com.np

3. Performance: Wihad Js tho spseid; granlabiity, pgsponse

time, recovery time etc.

4, Attributes: What are the considerations for
portability, correctness, maintainability, security, reliability
etc.

5. Design Constraints Imposed on an
Implementation: Are there any required standards in

effect, implementation language, policies for database
Integrity, resource limits, operating environment etc.

Characteristics of good SRS

Following are the features of a good SRS
document:

1. Correctness: User review is used to provide the
accuracy of requirements stated in the SRS. SRS 1is said to
be perfect if it covers all the needs that are truly
expected from the system.

2. Completeness:
Completeness of SRS indicates every sense of completion
including the numbering of all the pages, resolving the to
be determined parts to as much extent as possible as well
as covering all the functional and non—functional
requirements properly.
3. Consistency:

Requirements in SRS are said to be consistent if there are
no conflicts between any set of requirements. Examples of
conflict include differences in terminologies used at
separate places, logical conflicts like time period of report
generation, etc.

4.Unambiguousness: SRS is unambiguous when every
fixed requirement has only one interpretation This
suggests that each element is uniquely interpreted. In case
there is a method used with multiple definitions, the

VB S Ho el

5. Rankingsfior impartance and stability:fihepSRS is
ranked for importance and stability if each requirement in
it has an identifier to indicate either the significance or

stability of that particular requirement.

6. Modifiability: SRS should be made as modifiable as
likely and should be capable of quickly obtain changes to
the system to some extent. Modifications should be
perfectly indexed and cross-referenced.

7.Verifiability: SRS is correct when the specified
requirements can be verified with a cost-effective system
to check whether the final software meets those
requirements. The requirements are verified with the help
of reviews.

8.Traceability: The SRS is traceable if the origin of each
of the requirements is clear and if it facilitates the
referencing of each condition in future development or
enhancment documentation.

9. Design Independence: There should be an option to
select from multiple design alternatives for the final
system. More specifically, the SRS should not contain any
implementation details.

10.Testability: An SRS should be written in such a
method that it is simple to generate test cases and test
plans from the report.

11. Understandable by the customer: An end user
may be an expert in his/her explicit domain but might not
be trained in computer science. Hence, the purpose of
formal notations and symbols should be avoided too as
much extent as possible. The language should be kept

simple and clear. |
ebsite :- https://www.arjun00.com.np

Website :- https://www.arjun00.com.np
Software Design:

5.1 Objectives of design

5.2 Design framework

5.3 Software design models
5.4 Design process

5.5 Architecture design

5.6 Low level design

5.7 Coupling and cohesion
5.8 Software design strategies
5.9 Function oriented design
5.10 Object oriented design
5.11 Function oriented design Vs Object oriented design

Software design is a process to transform user
requirements into some suitable form, which helps
the programmer in software coding and
implementation.

Objectives of Software Design
Following are the purposes of Software design:

Effic iency \

\

Website :- htS: /AR &rjun00.com.np

Sottware:Design-Principlesy arjun00.com.np
Software design principles are concerned with
providing means to handle the complexity of the
design process effectively. Effectively managing the
complexity will not only reduce the effort needed for
design but can also reduce the scope of introducing
errors during design.

Following are the principles of Software Design

Software Design Principles

Top Down &
P:r't?t?;ﬁg I Modularity Bottom up
Strategy

] "-..
‘!.
\
.
- P NP0
, .
1
U 9 "
.
4% ¢ 3 K’
Y
;

Abstraction

Problem Partitioning

For small problem, we can handle the entire problem at once but for
the significant problem, divide the problems and conquer the
problem it means to divide the problem into smaller pieces so that
each piece can be captured separately.

For software design, the goal is to divide the problem into
manageable pieces.

Benefits of Problem Partitioning
» Software is easy to understand
Software becomes simple

- Software is easy to test

Software is easy to modify
Software is easy to maintain

Sftheabsditesy oty //www.arjun00.com.np

Absiiiﬂiﬁét'tﬁﬂ https:// w.arjunll.com.np

An abstraction is a tool that enables a designer to
consider a component at an abstract level without
bothering about the internal details of the
implementation. Abstraction can be used for existing
element as well as the component being designed.

Here, there are two common abstraction
mechanisms

Functional Abstraction
Data Abstraction

Functional Abstraction
A module is specified by the method it performs.

The details of the algorithm to accomplish the
functions are not visible to the user of the function.

Functional abstraction forms the basis for Function
oriented design approaches.

Data Abstraction

Details of the data elements are not visible to the
users of data. Data Abstraction forms the basis
for Object Oriented design approaches.

Modularity

Modularity specifies to the division of software into
separate modules which are differently named and
addressed and are integrated later on in to obtain the
completely functional software. It is the only
property that allows a program to be intellectually
manageable. Single large programs are difficult to
understand and read due to a large number of

erence variables, control paths, global variables,
ﬁe psite : %ttps *{:wwv?ar urg“l(% com.np

Website :- https://www.arjun00.com.np

There are several advantages of Modularity
It allows large programs to be written by several or different people

It encouraﬁes the creation of commonly used routines to be placed in the library and
used by other programs.

It simplifies the overlay procedure of loading a large program into main storage.
It provides more checkpoints to measure progress.

It provides a framework for complete testing, more accessible to test

It produced the well designed and more readable program.

Disadvantages of Modularity

There are several disadvantages of Modularity

Execution time maybe, but not certainly, longer

Storage size perhaps, but is not certainly, increased

Compilation and loading time may be longer

Inter-module communication problems may be increased

More linkage required, run-time may be longer, more source lines must be written,
and more documentation has to be done

Modular Design

Modular design reduces the design complexity and results in
easier and faster implementation by allowing parallel
development of various parts of a system. We discuss a
different section of modular design in detail in this section:

1. Functional Independence: Functional independence is
achieved by developing functions that perform only one kind
of task and do not excessively interact with other modules.
Independence is important because it makes implementation
more accessible and faster. The independent modules are
easier to maintain, test, and reduce error propagation and can
be reused in other programs as well. Thus, functional
independence is a good design feature which ensures software

quality.
It is measured using two criteria:

Cohesion: It measures the relative function
strength of a module.

Coupling: It measures the relative interdependence
among modules.

Website :- https://www.arjun00.com.np

Website :- https://www.arjun00.com.np
2. Information hiding: The fundamental of
Information hiding suggests that modules can be
characterized by the design decisions that protect
from the others, i.e., In other words, modules should
be specified that data include within a module is
inaccessible to other modules that do not need for
such information.

Strategy of Design

A good system design strategy is to organize the program
modules in such a method that are easy to develop and
latter too, change. Structured design methods help
developers to deal with the size and complexity of
programs. Analysts generate instructions for the
developers about how code should be composed and how
pieces of code should fit together to form a program.

To design a system, there are two possible approaches:
Top-down Approach
Bottom-up Approach

1. Top-down Approach: This approach starts with
the identification of the main components and then
decomposing them into their more detailed sub-
components.

<« Level 1

«<—evel 2

—Levelq
Website :- https://www.arjun00.com.np

2. Bottom;up Approach: Abottom-up-approach

begins with the lower details and moves towards up
the hierarchy, as shown in fig. This approach is
suitable in case of an existing system.

| l
' . . . “ Levell
|

Level 2

\

Level 3

Coupling and Cohesion
Module Coupling

In software engineering, the coupling is the degree of
interdependence between software modules. Two
modules that are tightly coupled are strongly
dependent on each other. However, two modules
that are loosely coupled are not dependent on each
other. Uncoupled modules have no
interdependence at all within them.

The various types of coupling techniques are shown in fig:

Module Coupling

Uncoupled: no Loosely Coupled: Highly Coupled:

\KRSENES :- hi‘f'ﬁeéf?ﬁ\’?f@f}%.arj W(fgfg&dg}‘ﬁsﬂp

(a)

' A gooddesign isithe oneithat has loy) coupling.
Coupling is measured by the number of relations
between the modules. That is, the coupling increases
as the number of calls between modules increase or
the amount of shared data is large. Thus, it can be
said that a design with high coupling will have more

erTors.
Coupling: Coupling is the measure of the degree of

interdependence between the modules. A good
software will have low coupling.

Best
Data Coupling

Stamp Coupling

Control Coupling

External Coupling

Common Coupling

Content Coupling [TV

Types of Coupling:

' Data Coupling: If the dependency between the
modules is based on the fact that they communicate by
passing only data, then the modules are said to be data
coupled. In data coupling, the components are
independent of each other and communicate through
data. Module communications don’t contain tramp data.
Example-customer billing system.

» Stamp Coupling In stamp coupling, the complete data
structure is passed from one module to another module.
Therefore, it involves tramp data. It may be necessary

dyey ﬂ%&g@ﬁggé@w@ﬁ@ww@@wmp

insightfu Zy programmer.

Website - https://www.arjunO0.com.np
Control Coupling: If the modules communicate by

passing control information, then they are said to be
control coupled. It can be bad if parameters indicate
completely different behavior and good if parameters
allow factoring and reuse of functionality. Example- sort
function that takes comparison function as an argument.

External Coupling: In external coupling, the modules
depend on other modules, external to the software being
developed or to a particular type of hardware. Ex-
protocol, external file, device format, etc.

Common Coupling: The modules have shared data
such as global data structures. The changes in global data
mean tracing back to all modules which access that data
to evaluate the effect of the change. So it has got
disadvantages like difficulty in reusing modules, reduced
ability to control data accesses, and reduced
maintainability.

Content Coupling: In a content coupling, one module
can modify the data of another module, or control flow is
passed from one module to the other module. This is the
worst form of coupling and should be avoided.

Cohesion: Cohesion is a measure of the degree to
which the elements of the module are functionally
related. It is the degree to which all elements
directed towards performing a single task are
contained in the component. Basically, cohesion is
the internal glue that keeps the module together. A
good software design will have high cohesion.

Website :- https://www.arjun00.com.np

Website :- httpg w.arjun00.com.np

High

Function
Sequence

Communicational — T i

Procedural
Temporal — Temporal
Logical ——— Logical
Coincidental —— G Low
Types of Cohesion:

Functional Cohesion: Every essential element for a sill}fgle computation
is contained in the component. A functional cohesion performs the task
and functions. It is an ideal situation.

Sequential Cohesion: An element outputs some data that becomes the
input for other element, i.e., data flow between the parts. It occurs naturally
in functional programming languages.

Communicational Cohesion: Two elements operate on the same input
data or contribute towards the same output data. Example- update record
in the database and send it to the printer.

Procedural Cohesion: Elements of procedural cohesion ensure the
order of execution. Actions are still weakly connected and unlikely to be
reusable. Ex- calculate student GPA, print student record, calculate
cumulative GPA, print cumulative GPA.

Temporal Cohesion: The elements are related by their timing involved.
A mogule connected with temporal cohesion all the tasks must be executed
in the same time span. This cohesion contains the code for initializing all
the parts of the system. Lots of different activities occur, all at unit time.

» Logical Cohesion: The elements are logically related
and not functionally. Ex- A component reads inputs from
tape, disk, and network. All the code for these functions
is in the same component. Operations are related, but the
functions are significantly different.

Coincidental Cohesion: The elements are not
related(unrelated). The elements have no conceptual
relationship other than location in source code. It is
accidental and the worst form of cohesion. Ex- print next

lpgasdrErse HigSRARRe astine o e8hgihp

component.

Website :- https://www.arjunO0.com.np

Coupling

Coupling is also called Inter-

Module Binding

Coupling shows the relationships

between modules.

Coupling shows the relative
independence between the
modules.

While creating, you should aim for

low coupling, i.e., dependency

among modules should be less.

In coupling, modules are linked to

the other modules.

Cohesion

Cohesion is also called Intra-Module Binding.

Cohesion shows the relationship within the module.

Cohesion shows the module's relative functional

strength.

While creating you should aim for high cohesion, i.e., a
cohesive component/ module focuses on a single
function (i.e, single-mindedness) with little interaction

with other modules of the system.

In cohesion, the module focuses on a single thing.

Function Oriented Design

Function Oriented design is a method to software
design where the model is decomposed into a set of
interacting units or modules where each unit or
module has a clearly defined function. Thus, the
system is designed from a functional viewpoint.

Design Notations

Design Notations are primarily meant to be used
during the process of design and are used to
represent design or design decisions. For a function-
oriented design, the design can be represented
graphically or mathematically by the following:

Website :- https://www.arjun00.com.np

Structured
Charts

Pseudocode |

» Data Flow Diagram

» Data-flow design is concerned with designing a
series of functional transformations that convert
system inputs into the required outputs. The design
is described as data-flow diagrams. These diagrams
show how data flows through a system and how the
output is derived from the input through a series of
functional transformations.

The notation which is used is based on the following symbols:

Symbol Name Meaning

- Rounded Rectangle It represents functions which transforms input to output. The
transformation name indicates its function.

- Rectangle It represents data stores. Again, they should give a
descriptive name,
O Circle It represents user interactions with the system that
provides input or receives output,
— Arrows It shows the direction of data flow. Their name describes the data
flowing along the path.

"and" and " The keywords ‘and” and "or". These have their usual
and" and "or" ywords meanings in boolean expressions. They are used to link data

Website -~ hitpSeyyvevenyzcen 31O cornemp

Data/Mictionariestps://www.arjun00.com.np

A data dictionary lists all data elements appearing in
the DFD model of a system. The data items listed
contain all data flows and the contents of all data
stores looking on the DFDs in the DFD model of a
system.

Structured Charts
It partitions a system into block boxes. A Black box

system that functionality is known to the user
without the knowledge of internal design.

VAN

Hierarchical format of a structure chart

Pseudo-code
Pseudo-code notations can be used in both the

preliminary and detailed design phases. Using
pseudo-code, the designer describes system
characteristics using short, concise, English
Language phases that are structured by keywords
such as If-Then-Else, While-Do, and End.

Object-Oriented Design
In the object-oriented design method, the system is

viewed as a collection of objects (i.e., entities). The
state is distributed among the objects, and each
object handles its state data. For example, in a
Library Automation Software, each library
representative may be a separate object with its data

ERindEors td l6reraty br/HeER dAel) .cOom.Np

e R SIRE R R3S AN, arjun00.com.np

Object Oriented Design

Objects Messages Abstraction

0 Polymorphism

Objects: All entities involved in the solution design are known as objects. For example, person,
banks, company, and users are considered as objects. Every entity has some attributes
associated with it and has some methods to perform on the attributes.

Classes: A class is a generalized description of an object. An object is an instance of a class. A
class defines all the attributes, which an object can have and methods, which represents the
functionality of the object.

Messa%es: Objects communicate by message passin%. Messaﬁes consist of the integrity of the
target object, the name of the req]uested operation, and any other action needed to perform the
function. Messages are often implemented as procedure or function calls.

Abstraction In object-oriented design, complexity is handled using abstraction. Abstraction is
the removal of the irrelevant and the amplification of the essentials.

Encapsulation: Encapsulation is also called an information hiding concept. The data and
operations are linked to a single unit. Encapsulation not only bundles essential information of
an object together but also restricts access to the data and methods from the outside world.

Inheritance: OOD allows similar classes to stack up in a hierarchical manner where the lower
or sub-classes can import, implement, and re-use allowed variables and functions from their
immediate superclasses.This property of OOD is called an inheritance. This makes it easier to
define a specific class and to create generalized classes from specific ones.

Polymorphism: OOD languages provide a mechanism where methods performing similar
tasks but vary in arguments, can be assigned the same name. This is known as polymorphism,
which allows a single interface is performing functions for different types. Depending upon how
the service is invoked, the respective portion of the code gets executed.

Encapsulation

Correctness:Software design should be correct as per
requirement.

' Completeness:The desi%n should have all components
like data structures, modules, and external interfaces,
etc.

Efficiency:Resources should be used efficiently by the
program.

Flexibility: Able toymodify on/changingfiéedsy m . np

Consistency:There should not be any inconsistency in
the desig¥gbSite :- hitps://www.arjur00.com.np
e es1] Wi]) e LLE/ DTNV VY VY. C] | . At . F

Maintainability: The design should be so simple so

that it can be easily maintainable by other designers.
program.

The software design process can be divided into the

following three levels of phases of design:

Interface Design
Architectural Design
Detailed Design

Interface Design:

Interface design is the specification of the
interaction between a system and its environment.
this phase proceeds at a high level of abstraction
with respect to the inner workings of the system 1i.e,
during interface design, the internal of the systems
are completely ignored and the system is treated as a

black box.

Architectural Design:

Architectural design is the specification of the major
components of a system, their responsibilities,
properties, interfaces, and the relationships and
interactions between them. In architectural design,
the overall structure of the system is chosen, but the
internal details of major components are ignored.

Detailed Design:

Design is the specification of the internal elements of
all major system components, their properties,
relationships, processing, and often their algorithms

andthe,data stragtures,/\\\ww. arjun00.com.np

COMPARISON FUNCTICN ORIENTED OBJECT CRIENTED

FACTORS DESIGN DESIGN

Abstraction The basic abstractions, The basic abstractions are
which are given to the not the real world
user, are real world functions but are the data
functions. abstraction where the real

world entities are

represented.

Function Functions are grouped Function are grouped
together by which a together on the basis of
higher level function is the data they operate since

State In this approach the state | Inthis approach the state

information information is often information is not
represented in a represented is not
centralized shared represented in a
memory. centralized memory butis

implemented or
distributed among the

objects of the system.

Approach Itis atop down approach. | Itis a bottom up approach.
Begins basis Begins by considering the | Begins by identifying

use case diagrams and objects and classes.
Decompose In function oriented We decompose in class

design we decomposein | level.

function/procedure level.

Use This approach is mainly This approach is mainly
used for computation used for evolving system
sensitive application. which mimics a business or

Website :- https://www.aljusnisem.np

Website :- https://www.arjun00.com.np
Software Metrics:

¢ 6.1 Software metrics: what & why?
¢ 6.2 Token count

¢ 6.3 Data structure metrics

¢ 6.4 Information flow metrics

¢ 6.5 Metrics analysis

6.1 SOFTWARE METRICS: WHAT AND WHY ?

Science begins with quantification; we cannot do physics without a notion of length and time;
we cannot do thermodynamics until we measure temperature. All engineering disciplines have
metrics (such as metrics for weight, density, wave length, pressure and temperature) to quan-
tify various characteristics of their products. The most fundamental question we can ask is
‘how big is the program™? Without defining what big means, it is obvious that it makes no
sense to say, “this program will need more testing than that program” unless we know “how
big they are relative to one another. Comparing two strategies also needs a notion of size. The
number of tests required by a strategy should be normalized to size. For example A needs 1.4
tests per unit of size, while strategy B needs 4.3 tests per unit of size.

What is meant by size was not obvious in the early phases of science development.
Newton's use of mass instead of weight was a breakthrough for physics, and early researchers
in thermodynamics had heat, temperature, and entropy hopelessly confused. Size is not obvi-
ous for the software. Metrics must be objective in the sense that the measurement process is
algorithmic and will yield the same results no matter who applies it [BEIZ90]. To see what
kinds of metrics, we need, let us ask some questions.

1. How to measure the size of a software?

2. How much will it cost to develop a software?
3. How many bugs can we expect?

4. When can we stop testing?

5. When can we release the software?

6. What is the complexity of a module’
7. What is the module strength and coupling?
8. What is the reliability at the time of release?
9. Which test technique is more effective?
10. Are we testing hard or are we testing smart?
11. Do we have a strong program or a weak test suite?

Website :- https://www.arjun00.com.np

Website :- https://www.arjun00.com.np

If we want an answer to the above questions, we will have to do our own measuring and
fit our own empirical laws to the measured data. Most of the metrics are aimed at getting
empirical laws that relate program size (however it be measured) to expected number of bugs,
expected number of tests required to find bugs, test technique effectiveness, resource require-
ment, release instant, reliability and quality requirement, etc.

6.1.1 Definition

Software metrics can be defined as (GOOD93] “The continuous application of measurement
based techniques to the software development process and its products to supply meaningful
and timely management information, together with the use of those techniques to improve that
process and its products”.

6.1.4 Categories of Metrics
There are three categories of software metrics which are given below:

(i) Product metrics: describe the characteristics of the product such as size, complex-
ity, design features, performance, efficiency, reliability, portability, ete,

(ii) Process metrics: describe the effectiveness and quality of the processes that pro-
duce the software product. Examples are:

« effort required in the process

¢ time to produce the product

¢ effectiveness of defect removal during development

* number of defects found during testing

¢ maturity of the process.

(11i) Project metrics: describe the project characteristics and execution. Examples are:

* number of software developers

» staffing pattern over the life cycle of the software

* cost and schedule

¢ productivity

Some metrics belong to multiple categories like quality metric may belong to all three
categories. It focuses on the quality aspects of the product process, and the project. Some
important metrics are discussed in subsequent sections of the chapter.

Website :- https://www.arjun00.com.np

Unive:;m Ih!ees:)!;te;rlm Eche iannly o} mmh% W ﬂt P“l'duﬂ

as either operators or operands. All software science measures are functions of the counta of
these tokens.

Generally, any symbol or keyword in a program that specifies an algorithmic action is
considered an operator, while a symbol used to represent data is considered an operand. Most
punctuation marks are also categorized as operators. Variables, constants and even labels are
operands. Operators consist of arithmetic symbols such as +, -, /, * and command names such
as “while”, “for”, “printf”, special symbols such as :=, braces, parentheses, and even function
names such as “eof” (end of file). The size of the vocabulary of a program, which consists of the
number of unique tokens used to build a program is defined as:

n=m+n, (6.1)
where N : vocabulary of a program
N, : number of unique operators
N, : number of unique operands
The length of the program in terms of the total number of tokens used is

N=N,+N, (6.2)
where N : program length.
N, : total occurrences of operators
N, : total occurrences of operands
It should be noted that N is closelv related to the lines of code (LOC) measure of program.

Data Structure Metrics

¢ Essentially the need for software development and
other activities are to process data. Some data is
input to a system, program or module; some data
may be used internally, and some data is the output
from a system, program, or module. Example=

Program Data Input Internal Data Data Output
Payroll Name/Social Security No./Pay Withholding rates = Gross Pay
rate/Number of hours worked | Overtime Factors withholding Net
Insurance Premium | Pay Pay Ledgers
Rates
Spreadsheet | Item Names/Item = Cell computations Spreadsheet
Amounts/Relationships among Subtotal items and totals
Items
Software Program Size/No of Software Model Parameter | Est. project effort

"“Website*= https://wwW:aHH0U.cOm,np >

Website - nttps://www.arjunQ0.com.np

That's why an important set of metrics which capture
in the amount of data input, processed in an output
form software. A count of this data structure is called
Data Structured Metrics. In these concentrations is
on variables (and given constant) within each
module & ignores the input-output dependencies.

There are some Data Structure metrics to computer
the effort and time required to complete the project.
There metrics are:

The Amount of Data.

The Usage of data within a Module.
Program weakness.

The sharing of Data among Modules.

1. The Amount of Data: To measure the amount
of Data, there are further many different metrics,
and these are:

Number of variable (VARS): In this metric, the
Number of variables used in the program is counted.

Number of Operands (1)2): In this metric, the
Number of operands used in the program is counted.
n= = VARS + Constants + Labels

Total number of occurrence of the variable
(N2): In this metric, the total number of occurrence
of the variables are computed

Website :- https://www.arjun00.com.np

2. ThéUsage of data withinraModule: The
measure this metric, the average numbers of live
variables are computed. A variable is live from its
first to its last references within the procedure.

‘ _ , Sum of count live variables
Average no of Live variables (LV) =

Sum of count of executable statements

3. Program weakness: Program weakness
depends on its Modules weakness. If Modules are
weak(less Cohesive), then it increases the effort and
time metrics required to complete the project.

Sum of count live variables
Average life of variables (y) =

Sum of count of executable statements

4.There Sharing of Data among Module: As
the data sharing between the Modules increases
(higher Coupling), no parameter passing between
Modules also increased, As a result, more effort and
time are required to complete the project. So Sharing
Data among Module is an important metrics to
calculate effort and time.

A A A

— » —

Three modules from an imaginary program

. // i yi A

.

A B ; C I]

"Pipes”of data shared among the modules

Main a.b.j Swap

Website tnelastadbartd/iviprégam biagsle. COM . NP

Wettgrntdion Flow Mt es 1P

The other set of metrics we would live to consider are
known as Information Flow Metrics. The basis of
information flow metrics is found upon the following
concept the simplest system consists of the
component, and it is the work that these components
do and how they are fitted together that identify the
complexity of the system. The following are the
working definitions that are used in Information
flow:

Component: Any element identified by

decomposing a (software) system into it's

constituent's parts.

Cohesion: The degree to which a component
performs a single function.

Coupling: The term used to describe the degree of
linkage between one component to others in the
same system.

Information Flow metrics deal with this type of
complexity by observing the flow of information
among system components or modules. This metrics
is given by Henry and Kafura. So it is also known
as Henry and Kafura's Metric.
This metrics is based on the measurement of the information flow
among system modules. It is sensitive to the complexity due to
interconnection among system component. This measure includes the

complexity of a software module is defined to be the sum of
complexities of the procedures included in the module. A process

coyftfibiites tomplekity due o the fellowing to)factors . np

Website :- https://www.arjunO0.com.np

The complexity of the procedure code itself.

The complexity due to the procedure's connections to its environment.
The effect of the first factor has been included through LOC (Line Of
Code) measure. For the quantification of the second factor, Henry and
Kafura have defined two terms, namely FAN-IN and FAN-OUT.

FAN-IN: FAN-IN of a procedure is the number of
local flows into that procedure plus the number of
data structures from which this procedure retrieve
information.

FAN -OUT: FAN-OUT is the number of local flows
from that procedure plus the number of data
structures which that procedure updates.

Procedure Complexity = Length * (FAN-IN *
FANOUT)**2

Fig: Aspects of Complexity

Website :- https://www.arjun00.com.np

CasesToolsHor Software Metricsp
Many CASE tools (Computer Aided Software
Engineering tools) exist for measuring software.
They are either open source or are paid tools. Some
of them are listed below:

Analystgj tool is based on the Eclipse platform and
available as a stand-alone Rich Client Application or
as an Eclipse IDE plug-in. It features search, metrics,
analyzing quality, and report generation for Java
programs.

CCCC s an open source command-line tool. It
analyzes C++ and Java lines and generates reports
on various metrics, including Lines of Code and
metrics proposed by Chidamber & Kemerer and
Henry & Kafura.

Chidamber & Kemerer Java Metrics is an open
source command-line tool. It calculates the C&K
object-oriented metrics by processing the byte-code
of compiled Java.

Dependency Finder is an open source. It is a suite
of tools for analyzing compiled Java code. Its core is
a dependency analysis application that extracts
dependency graphs and mines them for useful
information. This application comes as a command-
line tool, a Swing-based application, and a web
application.

Eclipse Metrics Plug-in 1.3.6 by Frank Sauer is
an open source metrics calculation and dependency
analyzer plugin for the Eclipse IDE. It measures

W dirie sl derRiRRET Ik Res R

ependencies.

. Eclipsé’Métrics Phuglin’/g 4 by 1anéd Walton is
open source. It calculates various metrics during
build cycles and warns, via the problems view, of
metrics 'range violations'.

» OOMeter is an experimental software metrics tool
developed by Alghamdi. It accepts Java/C# source
code and UML models in XMI and calculates various
metrics.

» Semmle is an Eclipse plug-in. It provides an SQL
like querying language for object-oriented code,
which allows searching for bugs, measure code
metrices, ete.

Software Reliability:

¢ 7.1 Basic Concepts

¢ 7.2 Software quality

¢ 7.3 Software reliability model

¢ 7.4 Capability maturity model (CMM)

Software Reliability

Basic Concepts

There are three phases in the life of any hardware component i.e.,
burn-in, useful life & wear-out.

In burn-in phase, failure rate is quite high initially, and it starts
decreasing gradually as the time progresses.

During useful life period, failure rate is approximately constant.

Failure rate increase in wear-out phase due to wearing out/aging of
components The best period is useful life period. The shape of this

cur is,like. a bat hat is w it is as bath tub
cur @Qﬁﬁt@tub &3’\ éNW él’ ﬁ@VCOm Nnp

\ﬂ{%bsite - https://www.arjun00.com.np

urn-in
Useful life i Wear-out

:
I
I
T i
I
Failure :
rate i
|
I
i
I
(]

' >

Time ——»

Fig. 7.1: Bath tub curve of hardware reliability.

We do not have wear out phase in software. The expected curve for
software is given in fig. 7.2.

4 Testing
hase | :
P : Useful life :
| |
T E i Obsolescence

Failure : :
rate : :
' :
| |
| |
| |

l l 5

— Time¢ —»

Fig. 7.2: Software reliability curve (failure rate versus time)

Website :- https://www.arjun00.com.np

Website SoftsvareReliabilit)d .com.np

Software may be retired only if it becomes obsolete. Some of
contributing factors are given below:

v change in environment

v" change in infrastructure/technology
v major change in requirements

v increase in complexity

v extremely difficult to maintain

v" deterioration in structure of the code
v slow execution speed

v" poor graphical user interfaces

What is Software Reliability?

“Software reliability means operational reliability. Who cares how
many bugs are in the program?

As per |[EEE standard: “Software reliability is defined as the ability of
a system or component to perform its required functions under
stated conditions for a specified period of time”.

Software reliability is also defined as the probability that a software
system fulfills its assigned task in a given environment for a
predefined number of input cases, assuming that the hardware and

the inputs are free of error.

“It is the probability of a failure free operation of a program for a
specified time in a specified environment”.

= Failures and Faults

A fault is the defect in the program that, when executed under
particular conditions, causes a failure.

The execution time for a program is the time that is actually spent by
a processor in executing the instructions of that program. The
second kind of time is calendar time. It is the familiar time that we

"WEBEHE™ https://www.arjun00.com.np

Therg,arerioyrigeneralWays<9! Charaolensiag)iailii® Ocauranees)n

Me: 4 time of failure,

2. time interval between failures,

3. cumulative failure experienced up to a given time,

4. failures experienced in a time interval.

Failure Number | Failure Time (sec) Failure interval (sec)
1 8 8
2 18 10
3 25 7
4 36 1
£ 45 9
6 57 12
7 71 14
8 86 15
9 104 18
10 124 20
111 143 19
12 169 26
13 197 28
14 222 25
15 250 28
Table 7.1: Time based failure specification
Time (sec) Cumulative Failures Failure in interval (30 sec)

30 3 3
60 6 3
90 8 2
120 9 1
150 11 2
180 12 1
210 13 1
240 14 1

\Webstible 7.0 Ebh: pAswa b Esiidditalich com.np

Website :- https://www.arjun00.com.np

Software Reliability Models

¢ A software reliability model indicates the form of a
random process that defines the behavior of software
failures to time.

¢ Most software models contain the following parts:
¢ Assumptions

¢ Factors
Software Reliability Modeling Techniques

Software modeling techniques can be divided into two sub-
categories:

Prediction Estimation
01 |Modeling 02 | Modeling

Website :- https://www.arjun00.com.np

DifferenWaetEE’ 'E)%t\?vgg[ﬁ = é%ﬁ%%’r@ J Pglpa% ﬁ;l?ym ﬂ%d iction

models and software reliability estimation models

Basics Prediction
Models

Data Uses historical

Reference information

When used in Usually made
development @ before

cycle development or

test phases; can

be used as early

as concept phase.

Estimation
Models

Uses data from the current
software development effort.

Usually made later in the

life cycle (after somedata
have been collected); not
typically used in concept or
development phases.

Time Frame Predict’ reliability= ' Estimate ' reliability

at some future at either present or

time.

¢ Reliability Models

some next time.

¢ A reliability growth model is a numerical model of

software reliability, which predicts how software
reliability should improve over time as errors are
discovered and repaired. These models help the
manager in deciding how much efforts should be
devoted to testing. The objective of the project
manager is to test and debug the system until the
required level of reliability is reached.

Website :- https://www.arjun00.com.np

TRrRYERa e R R Bl A M 8. np

Jelinski and
M de il Software Shooman Model
Reliability
Basic Execution | Littlewood- Verrall
Logarithmic Poisson Goel-Okumoto
Time Model Model

The Bug Seeding Musa-Okumoto
Model Model

Basic Execution Time Model

This model was established by J-D. Musa in 1979, und it i based o

execution time. The basm execution model is the most popular and
generally used reliability growth model, mainly because:

It is practical, simple, and easy to understand.
Its parameters clearly relate to the physical world.
It can be used for accurate reliability prediction.

The basic execution model determines failure behavior initially using
execution time. Execution time may later be converted in calendar
time.

The failure behavior is a nonhomogeneous Poisson process,
which means the associated probability distribution is a Poisson

process whose characteristics vary in time.
Prime Ministers of India | List of Prime Minister of India (1947-2020)

Website :- https://www.arjun00.com.np

weGeel-Okumato Model ., .,

¢ The Goel-Okumoto model (also called as exponential
NHPP model) is based on the following assumptions:

¢ All faults in a program are mutually independent of
the failure detection point of view.

¢ The number of failures detected at any time is
proportional to the current number of faults in a
program. This means that the probability of the
failures for faults actually occurring, i.e., detected, is
constant.

Software Qulaity

¢ Software Quality

¢ Software quality product is defined in term of its
fitness of purpose. That is; a'quality product does
precisely what the users want it to do. For software
products, the fitness of use is generally explained in
terms of satisfaction of the requirements laid down
in the SRS document.

¢ The modern view of a quality associated with
a software product several quality methods
such as the following:

¢ Portability: A software device is said to be portable,
if it can be freely made to work in various operating
system environments, in multiple machines, with
other software products, etc.

¢ Usability: A software product has better usability if
various categories of users can easily invoke the

functions 6Ethe produdtwww.arjun00.com.np

Website - nttps://www.arjunQ0.com.np
¢ Reusability: A software product has excellent

reusability if different modules of the product can
quickly be reused to develop new products.

¢ Correctness: A software product is correct if
various requirements as specified in the SRS
document have been correctly implemented.

¢ Maintainability: A software product is
maintainable if bugs can be easily corrected as and
when they show up, new tasks can be easily added to
the product, and the functionalities of the product
can be easily modified, etc.

Capability maturity model (CMM)

¢ CMM was developed by the Software Engineering
Institute (SEI) at Carnegie Mellon University in
1987.

¢ It is not a software process model. It is a framework
that is used to analyze the approach and techniques
followed by any organization to develop software
products.

¢ It also provides guidelines to further enhance the
maturity of the process used to develop those
software products.

¢ It is based on profound feedback and development
practices adopted by the most successtul
organizations worldwide.

Website :- https://www.arjun00.com.np

¢ This r\r“%%%?l eseri tgséféﬁgtvgg@r%?ggﬂ?vgggén;?rocess
improvement that should be followed by moving
through 5 different levels.

¢ Each level of maturity shows a process capability
level. All the levels except level-1 are further
described by Key Process Areas (KPA’s).

¢ Key Process Areas (KPA’s):
Each of these KPA’s defines the basic requirements
that should be met by a software process in order to
satisfy the KPA and achieve that level of maturity.

LEVEL4

LEVEL-3

LEVEL-2

LEVELS PROCESS CHANGE MANAGEMENT OPTIMIZING

TECHNOLOGY CHANGE MANAGEMENT
DEFECT PREVENTAION

MANAGED
SOF TWARE QUALITY MANAGEMENT

QUANTITAIVE MANAGEMENT

PEER REVIEWS
INTER-GROUP COORDINATION DEFINED
ORGANIZATION PROCESS DEFINITION
ORGANIZATION PROCESS FOCUS
TRAINING PROGRAMS

PROJECT PLANNING
CONFIGURATION MANAGEMENT REPEATABLE
REQUIREMENTS MANAGEMENT
SUB-CONTRACT MANAGEMENT
SOFTWARE QUALITY ASSURANCE

INITIAL

.com.np

¢ The 5 levelsiof CMMare/as followsU.com.np

Level-1: Initial —
No KPA’s defined.

Processes followed are Adhoc and immature and are
not well defined.

Unstable environment for software development.

No basis for predicting product quality, time for
completion, etc.

Level-2: Repeatable —

Focuses on establishing basic project management policies.

Experience with earlier projects is used for managing new
similar natured projects.

Project Planning- It includes defining resources
required, goals, constraints, etc. for the project. It presents
a detailed plan to be followed systematically for the
successful completion of good quality software.

Configuration Management- The focus is on
maintaining the performance of the software product,
including all its components, for the entire lifecycle.

Requirements Management- It includes the
management of customer reviews and feedback
which result in some changes in the requirement set.
It also consists of accommodation of those modified
requirements.

Subcontract Management- It focuses on the
effective management of qualified software
contractors i.e. it manages the parts of the software

W developed by third parties
‘W }ba e . Ew waw%r un00.com.np

Website :- https://www.arjun00.com.np
Software Quality Assurance- It guarantees a
good quality software product by following certain
rules and quality standard guidelines while

developing.
Level-3: Defined —

At this level, documentation of the standard
guidelines and procedures takes place.

It is a well-defined integrated set of project-specific
software engineering and management processes.

Peer Reviews- In this method, defects are removed
by using a number of review methods like
walkthroughs, inspections, buddy checks, etc.

Intergroup Coordination- It consists of planned
interactions between different development teams to
ensure efficient and proper fulfillment of customer
needs.

Organization Process Definition- Its key focus
is on the development and maintenance of the
standard development processes.

Organization Process Focus- It includes
activities and practices that should be followed to
improve the process capabilities of an organization.

Training Programs- It focuses on the
enhancement of knowledge and skills of the team
members including the developers and ensuring an
increase in work efficiency.

Website :- https://www.arjun00.com.np

¢ Level i Manageds-//www.arjunOU.com.np

¢ At this stage, quantitative quality goals are set for the
organization for software products as well as
software processes.

¢ The measurements made help the organization to
predict the product and process quality within some
limits defined quantitatively.

¢ Software Quality Management- It includes the
establishment of plans and strategies to develop
quantitative analysis and understanding of the
product’s quality.

¢ Quantitative Management- It focuses on
controlling the project performance in a quantitative
manner.

¢ Level-5: Optimizing —
¢ This is the highest level of process maturity in CMM

and focuses on continuous process improvement in
the organization using quantitative feedback.

¢ Use of new tools, techniques, and evaluation of
software processes is done to prevent recurrence of

known defects.

¢ Process Change Management- Its focus is on the
continuous improvement of the organization’s
software processes to improve productivity, quality,
and cycle time for the software product.

¢ Technology Change Management- It consists of
the identification and use of new technologies to
improve product quality and decrease product

depelopmenttimetps://www.arjun00.com.np

¢ Defect Prévéntion=lt foeuses ofi thé identification
of causes of defects and prevents them from
recurring in future projects by improving project-
defined processes.

Software Testing:

¢ 8.1 Testing process

8.2 Some important terminologies
8.3 Unit testing

8.4 Integration testing

8.5 System testing

8.6 Regression Testing

8.7 Performance testing

8.8 White Box testing and black box testing
8.9 Acceptance testing

8.10 Alpha and Beta testing

8.11 Debugging techniques, tools and approaches

¢ Introduction:-

¢ Testing is the process of executing a program with
the aim of finding errors. To make our software
perform well it should be error-free. If testing is done
successfully it will remove all the errors from the
software.

Website :- https://www.arjun00.com.np

White Box Testing Black box Testing

Functional Non-Functional

— Unit Testing —> Compatablity Testing

— Intergration

—> System Testing —»> Performance Testing
—»> User Accecptance Testing > Usability Testing
Types of Testing:-

¢ 1. Unit Testing

¢ It focuses on the smallest unit of software design. In

this, we test an individual unit or group of
interrelated units. It is often done by the
programmer by using sample input and observing its
corresponding outputs.
Example:

o a) In a program we are checking if loop, method or function is working

fine
» b) Misunderstood or incorrect, arithmetic precedence.

¢ c) Incorrect initialization

Website :- https://www.arjun00.com.np

¢ 2. Integration Festing,ww.arjun00.com.np

¢ The objective is to take unit tested components and
build a program structure that has been dictated by
design. Integration testing is testing in which a group
of components is combined to produce output.

¢ Integration testing is of four types: (i) Top-down (i1)
Bottom-up (iii) Sandwich (iv) Big-Bang
Example

¢ a) Black Box testing:- It is used for validation. In this
we ignore internal working mechanism and focuse
on what is the output?.

¢ (b) White Box testing:- It is used for verification. In
this we focus on internal mechanism i.e. how the
output is achieved?

¢ White Box Testing:

¢ It is also called Glass Box, Clear Box, Structural
Testing. White Box Testing is based on the
application’s internal code structure. In white-box
testing, an internal perspective of the system, as well
as programming skills, are used to design test cases.
This testing is usually done at the unit level.

¢ System Testing

¢ This software is tested such that it works fine for the
different operating systems. It is covered under the
black box testing technique. In this, we just focus on
the required input and output without focusing on
internal working.
In this, we have security testing, recovery testing,
stress testing, and performance testing

rahsdte - https://www.arjun00.com.np

¢ This ineliide functionalwswell ashonfiinetional
testing

¢ a) Black Box testing:- It is used for validation. In this
we ignore internal working mechanism and focuse
on what is the output?.

¢ (b) White Box testing:- It is used for verification. In
this we focus on internal mechanism i.e. how the
output is achieved?

¢ White Box Testing:

¢ It is also called Glass Box, Clear Box, Structural
Testing. White Box Testing is based on the
application’s internal code structure. In white-box
testing, an internal perspective of the system, as well
as programming skills, are used to design test cases.
This testing is usually done at the unit level.

¢ System Testing

¢ This software is tested such that it works fine for the
different operating systems. It is covered under the
black box testing technique. In this, we just focus on
the required input and output without focusing on
internal working.
In this, we have security testing, recovery testing,
stress testing, and performance testing
Example:

¢ This include functional as well as non functional
testing

Website :- https://www.arjun00.com.np

' 3. Remg»l" ression Tégﬁﬁgwx,w.ei runQ0.com.np

¢ Every time a new module is added leads to changes
in the program. This type of testing makes sure that
the whole component works properly even after
adding components to the complete program.
Example

¢ In school record suppose we have module staff,
students and finance combining these modules and
checking if on integration these module works fine is
regression testing

¢ Acceptance Testing

¢ When the software is ready to hand over to the
customer it has to go through last phase of testing
where it is tested for user-interaction and response.
This is important because even if the software
matches all user requirements and if user does not
like the way it appears or works, it may be rejected.

¢ Types of Acceptance Testing:
¢ 5. Alpha Testing

¢ This is a type of validation testing. It is a type
of acceptance testing which is done before the
product is released to customers. It is typically done
by QA people.
Example:

¢ When software testing is performed internally within
the organization

Website :- https://www.arjun00.com.np

' 6. Betﬁ'ﬂ?égﬁmfg nttps://www.arjunO0.com.np

¢ The beta test is conducted at one or more customer
sites by the end-user of the software. This version is
released for a limited number of users for testing in a

real-time environment
Example:

¢ When software testing is performed for the limited
number of people

¢ Performance Testing

¢ It is designed to test the run-time performance of
software within the context of an integrated system.
It is used to test the speed and effectiveness of the
program. It is also called load testing. In it we check,
what is the performance of the system in the given
load.
Example:

¢ Checking number of processor cycles.
Debugging :

¢ Debugging is the process of finding and resolving
defects or problems within a computer program that
prevent correct operation of computer software or a

system.

¢ Need for debugging:
Once errors are known during a program code, it’s
necessary to initial establish the precise program
statements liable for the errors and so to repair

thiRspsite - https://www.arjun00.com.np

yegsite ;- https://wyww arjunQl.com.np
Challenges'in Debugging:
There are lot of problems at the same time as acting the
debugging. These are the following:

¢ Debugging is finished through the individual that evolved
the software program and it’s miles difficult for that person
to acknowledge that an error was made.

¢ Debugging is typically performed under a tremendous
amount of pressure to fix the supported error as quick as
possible.

¢ It can be difficult to accurately reproduce input conditions.

¢ Compared to the alternative software program
improvement activities, relatively little research, literature
and formal preparation exist at the procedure of debugging.

¢ Debugging Approaches:
The following are a number of approaches popularly
adopted by programmers for debugging.

¢ Brute Force Method:
This is the foremost common technique of debugging
however is that the least economical method. during this
approach, the program is loaded with print statements to
print the intermediate values with the hope that a number
of the written values can facilitate to spot the statement in
error. This approach becomes a lot of systematic with the
utilisation of a symbolic program (also known as a source
code debugger), as a result of values of various variables
will be simply checked and breakpoints and watch-points
can be easily set to check the values of variables
effortlessly.

Website :- https://www.arjun00.com.np

Website :- https://www.arjun00.com.np

¢ Backtracking:
This is additionally a reasonably common approach.
during this approach, starting from the statement at
which an error symptom has been discovered, the
source code is derived backward till the error is
discovered. sadly, because the variety of supply lines
to be derived back will increase, the quantity of
potential backward methods will increase and should
become unimaginably large so limiting the
utilisation of this approach.

¢ Cause Elimination Method:
In this approach, a listing of causes that may
presumably have contributed to the error symptom
is developed and tests are conducted to eliminate
every error. A connected technique of identification
of the error from the error symptom is that the
package fault tree analysis.

¢ Program Slicing:
This technique is analogous to backtracking. Here
the search house is reduced by process slices. A slice
of a program for a specific variable at a particular
statement is that the set of supply lines preceding
this statement which will influence the worth of that
variable

Website :- https://www.arjun00.com.np

Website :- https://www.arjunO0.com.np
¢ Debugging Tools:

Debugging tool is a computer program that is used to test
and debug other programs. A lot of public domain software
like gdb and dbx are available for debugging. They offer
console-based command line interfaces. Examples of
automated debugging tools include code based tracers,
profilers, interpreters, etc.

Some of the widely used debuggers are:

¢ Radare2
¢ WinDbg
¢ Valgrind

Software Maintenance:

¢ 9.1 Need for software maintenance
¢ 9.2 Types of software maintenance
¢ 9.3 Software maintenance process model.

¢ 9.4 Software maintenance cost

Software Maintenance

¢ Software Maintenance is the process of modifying a
software product after it has been delivered to the
customer. The main purpose of software
maintenance is to modify and update software
applications after delivery to correct faults and to
improve performance.

Website :- https://www.arjun00.com.np

Website :- https://www.arjun00.com.np
Need for Maintenance —

Software Maintenance must be performed in order to:
¢ Correct faults.

¢ Improve the design.

¢ Implement enhancements.

¢ Interface with other systems.

¢ Accommodate programs so that different hardware,
software, system features, and telecommunications
facilities can be used.

¢ Migrate legacy software.

¢ Retire software.

¢ Categories of Software Maintenance/Types —
Maintenance can be divided into the following:

¢ Corrective maintenance:
Corrective maintenance of a software product may be
essential either to rectify some bugs observed while
the system is in use, or to enhance the performance
of the system.
Adaptive maintenance:
This includes modifications and updations when the
customers need the product to run on new platforms,
on new operating systems, or when they need the
product to interface with new hardware and
software.

Website :- https://www.arjun00.com.np

¢ Perfective maintenaneesw.arjunl.com.np
A software product needs maintenance to support
the new features that the users want or to change
different types of functionalities of the system
according to the customer demands.

¢ Preventive maintenance:
This type of maintenance includes modifications and
updations to prevent future problems of the
software. It goals to attend problems, which are not
significant at this moment but may cause serious
issues in future.

Process of Software Maintenance:

¢ Software Maintenance is an important phase of
Software Development Life Cycle (SDLC), and it is
implemented in the system through a proper
software maintenance process, known as Software
Maintenance Life Cycle (SMLC). This life cycle
consists of seven different phases, each of which can
be used in iterative manner and can be extended so
that customized items and processes can be
included. These seven phases of Software
Maintenance process are:

¢ Identification Phase:

¢ In this phase, the requests for modifications in the software
are identified and analysed. Each of the requested
modification is then assessed to determine and classify the
type of maintenance activity it requires. This is either
generated by the system itself, via logs or error messages,

ov¥ethsilser.- https://www.arjun00.com.np

' Analysis Phases; ps://www.arjun00.com.np

¢ The feasibility and scope of each validated
modification request are determined and a plan is
prepared to incorporate the changes in the
software. The input attribute comprises validated
modification request, initial estimate of resources,
project documentation, and repository
information. The cost of modification and
maintenance is also estimated.

¢ Design Phase:

¢ The new modules that need to be replaced or
modified are designed as per the requirements
specified in the earlier stages. Test cases are
developed for the new design including the safety
and security issues. These test cases are created for
the validation and verification of the system.

¢ Implementation Phase:

¢ In the implementation phase, the actual modification
in the software code are made, new features that
support the specifications of the present software are
added, and the modified software is installed. The
new modules are coded with the assistance of
structured design created in the design phase.

¢ System Testing Phase:

¢ Regression testing is performed on the modified
system to ensure that no defect, error or bug is left
undetected. Furthermore, it validates that no new
faults are introduced in the software as a result of
maintenance activity. Integration testing is also

carvied ontbetwagn new modnlesiandthesssiemp

Website :- https://www.arjun00.com.np
¢ Acceptance Testing Phase:

¢ Acceptance testing is performed on the fully
integrated system by the user or by the third party
specified by the end user. The main objective of this
testing is to verify that all the features of the software
are according to the requirements stated in the
modification request.

¢ Delivery Phase:

¢ Once the acceptance testing is successfully
accomplished, the modified system is delivered to
the users. In addition to this, the user is provided
proper consisting of manuals and help files that
describe the operation of the software along with its
hardware specifications. The final testing of the
system is done by the client after the system is
delivered.

Software Maintenance Models:

¢ To overcome internal as well as external problems of
the software, Software maintenance models are
proposed. These models use different approaches
and techniques to simplify the process of
maintenance as well as to make is cost effective.
Software maintenance models that are of most
importance are:

Website :- https://www.arjun00.com.np

¢ Quick-FigMadel:hitps://www.arjun00.com.np

¢ This is an ad hoc approach used for maintaining the
software system. The objective of this model is to
identify the problem and then fix it as quickly as
possible. The advantage is that it performs its work
quickly and at a low cost. This model is an approach
to modify the software code with little consideration
for its impact on the overall structure of the software
system.

Quick Fix Model

m.np

pttps:// www.arjun

Problem Found

¢ Iterative Enhancement Model:

¢ Iterative enhancement model considers the changes
made to the system are iterative in nature. This
model incorporates changes in the software based on
the analysis of the existing system. It assumes
complete documentation of the software is available
in the beginning. Moreover, it attempts to control

cotplexity anditities t6 widintain|good (design . NP

Website :- https://www.arjun00.com.np

lterative Enhancement Model

¢ Tterative Enhancement Model is divided into three

stages:
¢ Analysis of software system.

¢ Classification of requested modifications.
¢ Implementation of requested modifications.
¢ The Re-use Oriented Model:

¢ The parts of the old/existing system that are
appropriate for reuse are identified and understood,
in Reuse Oriented Model. These parts are then go
through modification and enhancement, which are
done on the basis of the specified new requirements.
The final step of this model is the integration of
modified parts into the new system.

Website :- https://www.arjun00.com.np

Website RW@HMW}%UO com.np

Old System

Requirement
Analysis

__‘\‘

Design

Source Code

Test Data

-

11 ll

TFoO—APETOTMUER DA

\
¢ Boehm's Model:

¢ Boehm’s Model performs maintenance process
based on the economic models and principles. It
represents the maintenance process in a closed loop
cycle, wherein changes are suggested and approved
first and then are executed.

Boehm's Model

o

"
A

Approved
Changes

Proposed
Changes

New Varsion

: of software
Results y

Website :- AW N00.com.np

Website :- https://www.arjun00.com.np

¢ Taute Maintenance Model:

¢ Named after the person who proposed the model,
Taute’s model is a typical maintenance model that
consists of eight phases in cycle fashion. The process
of maintenance begins by requesting the change and
ends with its operation. The phases of Taute’s
Maintenance Model are:

Taute Maintainance Model

v

Change Request Phase

4|-|| I-l:.“hll: I-'-\.I--.l-l'\-l |'|\:
: - Lt LW I kL

Operation Phase

Documentation Phase

Release Phase

Website :- https://www.arjun00.com.np

vy %Jﬁﬁhgef}b@éﬁt“iilﬁ{élé” 00.com.np
¢ Estimate Phase.
¢ Schedule Phase.
¢ Programming Phase.
¢ Test Phase.
¢ Documentation Phase.
¢ Release Phase.
¢ Operation Phase.

Software maintenance cost

¢ Software maintenance cost factors:
The key factors that distinguish development and
maintenance and which lead to higher maintenance
cost are divided into two subcategories:

¢ Non-Technical factors
¢ Technical factors

¢ Non-Technical factors:
The Non-Technical factors include:

¢ Application Domain

¢ Staff stability

¢ Program lifetime

¢ Dependence on External Environment
¢ Hardware stability

Website :- https://www.arjun00.com.np

Website :- https://www.arjun00.com.np

¢ Technical factors:
Technical factors include the following:

¢ module independence

¢ Programming language

¢ Programming style

¢ Program validation and testing
¢ Documentation

¢ Configuration management techniques

¢ Efforts expanded on maintenance may be divided
into productivity activities (for example analysis and
evaluation, design and modification, coding). The
following expression provides a module of
maintenance efforts:

¢ M=P+K(C-D)

¢ where,
M: Total effort expanded on the maintenance.
P: Productive effort.
K: An empirical constant.
C: A measure of complexity that can be attributed to
a lack of good design and documentation.
D: A measure of the degree of familiarity with the
software.

Website :- https://www.arjun00.com.np

Website :- https://www.arjun00.com.np
Quality assurance
¢ 10.1 Software quality attributes

¢ 10.2 Quality factors
10.3 Quality control

10.4 Quality assurance

10.5 Software quality assurance
10.6 Software safety

10.7 The ISO 9000 model

10.8 SEI capability maturity model

10.9 Verification and validation

¢ Software Quality Attributes are features that
facilitate the measurement of performance of a
software product by Software Testing
professionals, and include attributes such as
availability, interoperability, correctness, reliability,
learnability, robustness, maintainability, readability,
extensibility, testability, efficiency, and portability.
High scores in Software Quality
Attributes enable software architects to guarantee
that a software application will perform as the
specifications provided by the client.

¢ #1) Reliability

¢ Measure if the product is reliable enough to sustain
in any condition. Should give the correct results
consistently. Product reliability is measured in terms

f working of roject under diffe workin
RS B AR BRD - com 1

Website :- https://www.arjun00.com.np

¢ #2) Maintainability

¢ Different versions of the product should be easy to maintain.
For development, it should be easy to addcode to the existing
system, should be easy to upgrade for new features and new
technologies from time to time.

¢ #3) Usability
¢ This can be measured in terms of ease of use. The

application should be user-friendly. It should be easy
to learn. Navigation should be simple.

¢ #4) Portability
¢ This can be measured in terms of Costing issues

related to porting, Technical issues related to
porting, and Behavioral issues related to porting.

¢ #5) Correctness

¢ The application should be correct in terms of its
functionality, calculations used internally and the
navigation should be correct. This means that the
application should adhere to functional
requirements.

¢ #6) Efficiency
¢ It is one of the major system quality attributes. It is
measured in terms of time required to complete any

task given to the system. For example, the system
should utilize processor capacity, disk space, and

memory efficiently.

Website :- https://www.arjun00.com.np

Website :- https://www.arjun00.com.np

¢ #7) Integrity or Security

¢ Integrity comes with security. System integrity or
security should be sufficient to prevent unauthorized
access to system functions, prevent information loss,
ensure that the software is protected from virus
infection, and protect the privacy of data entered
into the system.

¢ #8) Testability

¢ The system should be easy to test and find defects. If
required, it should be easy to divide into different
modules for testing.

¢ #9) Interoperability

¢ Interoperability of one system to another should be
easy for the product to exchange data or services
with other systems. Different system modules should
work on different operating system platforms,
different databases, and protocol conditions.

¢ What is Quality Control?

¢ Quality control is a set of methods used by
organizations to achieve quality parameters or
quality goals and continually improve the
organization's ability to ensure that a software
product will meet quality goals.

Website :- https://www.arjun00.com.np

® & & @ & @ > >

Quality COREST Protas: vVww-anunbu.com.np

Plan
‘—\
Quality Control \4

Parameters ;

Process m

Projects
Resources

The three class parameters that control software quality are:
Products

Processes

Resources

The total quality control process consists of:

Plan - It is the stage where the Quality control processes are planned
Do - Use a defined parameter to develop the quality

Check - Stage to verify if the quality of the parameters are met

Act - Take corrective action if needed and repeat the work

Quality Control characteristics:
¢ Process adopted to deliver a quality product to the
clients at best cost.

¢ Goal is to learn from other organizations so that
quality would be better each time.

¢ To avoid making errors by proper planning and

eXEutioH Svith ldotpéet Péiéw prigesssl0.com.np

¢ Quality Assurance:: QualityzAssuranceis the
preventive set of activities that provide greater
confidence that the project will be completed

successfully.
¢ Quality Assurance focuses on how the engineering

and management activity will be done?

¢ As anyone is interested in the quality of the final
product, it should be assured that we are building the
right product.

¢ It can be assured only when we do inspection &
review of intermediate products, if there are any
bugs, then it is debugged. This quality can be

Software Quality Assurance

¢ Software quality assurance is a planned and
systematic plan of all actions necessary to provide
adequate confidence that anitem or product
conforms to establish technical requirements.

¢ A set of activities designed to calculate the process by
which the products are developed or manufactured.

SQA Encompasses

¢ A quality management approach
¢ Effective Software engineering technology (methods

and tools)
¢ Formal technical reviews that are tested throughout

the software process
¢ A multitier testing strategy
¢ Control of software documentation and the changes

made to it.
¢ A procedure to ensure compliances with software

Vi nt standards
SRR ARGSS R wmanaKiuR00.com.np

Website :- nttps://iwww.arjun00.com.np
¢ SQA Activities

¢ Software quality assurance is composed of a variety
of functions associated with two different
constituencies ? the software engineers who do
technical work and an SQA group that has
responsibility for quality assurance planning, record
keeping, analysis, and reporting.

¢ Following activities are performed by an
independent SQA group:
¢ Prepares an SQA plan for a project: The

program is developed during project planning and is
reviewed by all stakeholders.

¢ Participates in the development of the
project's software process description: The
software team selects a process for the work to be
performed.

¢ Reviews software engineering activities to
verify compliance with the defined software
process: The SQA group identifies, reports, and
tracks deviations from the process and verifies that
corrections have been made.

¢ Audits designated software work products to
verify compliance with those defined as a
part of the software process:

Website :- https://www.arjun00.com.np

¢ Ensurésthit deviations in'seftWaré work and
work products are documented and handled
according to a documented
procedure: Deviations may be encountered in the
project method, process description, applicable
standards, or technical work products.

¢ Records any noncompliance and reports to
senior management: Non- compliance items are
tracked until they are resolved.

Quality Assurance v/s Quality control

Quality Assurance

Quality Assurance (QA) is the set of actions
including facilitation, training,- measurement, and
analysis needed to provide adequate confidence
that processes are established and continuously
improved to produce products or services that

conform to specifications and are fit for use.

QA is an activity that establishes and calculates
the processes that produce the product. If there is

no process, there is no role for QA.

QA helps establish process

QA sets up a measurement program to evaluate

Processes

Quality Control

Quality Control (QC) is described as the
processes' and methods'used to compare
product quality to requirements and
applicable standards, and the actions are
nonconformance s

taken when a

detected.

QC is an activity that demonstrates
whether or not the product produced met

standards.

QC relates to a particular product or

service

QC verified whether particular attributes

exist, or do not exist, in a explicit product

Website :- https://www.arjun00.com.np

QA sets up ¥ WiedolethEnt. prdd i - AU AMMEWaE L) bh &R Baridilar attributes
processes exist, or do not exist, in a explicit product

or service.

QA identifies weakness in processes and improves QC identifies defects for the primary goals

them of correcting errors.

Quality Assurance is a managerial tool. Quality Control is a corrective tool.

Verification is an example of QA. Validation is an example of QC.
The ISO 9000 model

¢ ISO (International Standards Organization) is a
group or consortium of 63 countries established to
plan and fosters standardization. ISO declared its
9000 series of standards in 1987. It serves as a
reference for the contract between independent
parties. The ISO g9ooo0 standard determines the
guidelines for maintaining a quality system. The ISO
standard mainly addresses operational methods and
organizational methods such as responsibilities,
reporting, etc. ISO 9000 defines a set of guidelines

for the production process and is not directly
concerned about the product itself.

Types of ISO 9000 Quality Standards

ISO 9000 is a series of three standards:

Website :- https://www.arjunO0.com.np
ISO 9000 Certification

il

: =Sy
ﬁ‘} -
Pre Compliance 77 Continued ﬁ‘
| Assessment Audit %‘ inspection “g:
- - 7 . o

Document

© Applications review and
:-‘ L y o e Adequacy of

Audit

Registeration I‘ \{;‘%

E

» Application: Once an organization decided to go for ISO certification,
it applies to the registrar for registration.

¢ Pre-Assessment: During this stage, the registrar makes a rough
assessment of the organization.

¢ Document review and Adequacy of Audit: During this stage, the
registrar reviews the document submitted by the organization and
suggest an improvement.

¢ Compliance Audit: During this stage, the registrar checks whether
the organization has compiled the suggestion made by it during the
review or not.

¢ Registration: The Registrar awards the ISO certification after the
successful completion of all the phases.

¢ Continued Inspection: The registrar continued to monitor the
organization time by time.

¢ Verification and Validation is the process of
investigating that a software system satisfies
specifications and standards and it fulfills the
required purpose. Barry Boehm described
verification and validation as the following:

¢ Verification: Are we building the product right?
Validation: Are we building the right product?

Website :- https://www.arjun00.com.np

Website - nttps://www.arjunQ0.com.np

¢ The ISO 9000 series of standards is based on the

assumption that if a proper stage is followed for
production, then good quality products are bound to
follow automatically. The types of industries to
which the various ISO standards apply are as follows.

ISO 9001: This standard applies to the
organizations engaged in design, development,
production, and servicing of goods. This is the
standard that applies to most software development
organizations.

ISO 9002: This standard applies to those

organizations which do not design products but are
only involved in the production. Examples of these
category industries contain steel and car
manufacturing industries that buy the product and
plants designs from external sources and are
engaged in only manufacturing those products.
Therefore, ISO 9002 does not apply to software
development organizations.

ISO 9003: This standard applies to organizations
that are involved only in the installation and testing
of the products. For example, Gas companies.

How to get ISO 9000 Certification?

An organization determines to obtain ISO 9oo0
certification applies to ISO registrar office for
registration. The process consists of the following
stages:

Website :- https://www.arjun00.com.np

Website :- https://www.arjun00.com.np

¢ Verification:
Verification is the process of checking that a software
achieves its goal without any bugs. It is the process to
ensure whether the product that is developed is right
or not. It verifies whether the developed product
fulfills the requirements that we have.
Verification is Static Testing.

Activities involved in verification:

Inspections
Reviews
Walkthroughs
Desk-checking

¢ Validation:
Validation is the process of checking whether the
software product is up to the mark or in other words
product has high level requirements. It is the process
of checking the validation of product i.e. it checks
what we are developing is the right product. it is
validation of actual and expected product.
Validation is the Dynamic Testing.

¢ Activities involved in validation:

¢ Black box testing
¢ White box testing

¢ Unit testing
¢ Integration testing

Website :- https://www.arjun00.com.np

Software Safety

¢ Software Safety

¢ Software has been built into more and more products
and systems over the years and has taken on more
and more of the functionality of those systems. The
question is: how dependable is the functionality
provided by software? The traditional approach to
verification of functionality - try it out and see if it
works - is of limited value in the case of software
which can be much more complex than hardware.

What is Safety Testing?

Safety testing in software systems aims at optimizing
system safety in the design, development, use, and
maintenance of software systems and their
integration with safety-critical hardware systems in a

PR S SR EeAbww.arjun00.com.np

Website :- https://www.arjun00.com.np
¢ Aspects of Software Safety:

¢ Functioning software should not generate hazards - Eg:
Guiding the state of the art aircraft should NOT steer into
the ocean

¢ Monitoring systems must perform flawlessly - Eg: Back-up
computer Should start automatically when primary fails

¢ Goals in Safety Testing:

¢ In complex systems where there are many interactions
involved, the safety-critical functionality should be
identified and thoroughly analyzed.

¢ Contributing factors and resultant hazards associated with
the system are identified and eliminated.

¢ The number of safety critical interfaces are kept low
to avoid injury or death.

¢ Safety attributes are to be addressed as part of all the
levels of software testing.

WWW. arjun00.com.np

Website :- https://www.arjun00.com.np

